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OA.1 Theoretical Results

Throughout this section, we assume that the inequality in Lemma 2 holds—i.e., either assume that worker
flow matrices are as in the data or that there are two sectors, 𝑆 = 2.

OA.1.1 Single Crossing Condition

We know from Lemma 2 that, compared with the canonical model calibrated by matching the one-period
worker flow matrix, the model with worker heterogeneity implies lower values of 𝑏𝑘 at least for 𝑘 = 0 and
𝑘 = 1:

𝑏0 =
(
F0 −F2

)
𝑠𝑠

= 1− (F2)𝑠𝑠,

𝑏1 =
(
F1 −F3

)
𝑠𝑠

= (F1)𝑠𝑠 − (F3)𝑠𝑠 .

Thus, 𝑘 ≥ 1. In Figure OA.1, we plot the difference between {𝑏𝑘} implied by the canonical model and those
observed in the data (extrapolated using the method described in the main text). Initially, the canonical model
yields larger values of 𝑏𝑘 , but eventually it leads to smaller values compared with those implied by the data
(although not plotted, this is true for all values of 𝑘 greater than 9; i.e., there is no more crossing).

OA.1.2 Response to a One-time Shock

Consider a one-time negative shock to a sector 𝑠 ∈ S that is known to agents in period 1:

d𝑤𝑠𝜏 = −∆ < 0 (OA.1)

for given 𝜏 > 1. The effect of any series of negative shocks to sector 𝑠 can be calculated as the sum of the
effects of such one-time negative shocks.
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Figure OA.1. Differences in 𝑏𝑘 Series: Manufacturing Sector
Notes: For each 𝑘 , this figure plots the difference between the diagonal elements of (F𝑘 − F𝑘+2) corresponding to
the manufacturing sector implied by the canonical model and those observed in the data. For the canonical model, we
compute F𝑘 by multiplying F1 𝑘 times. Since we only observe a finite number of worker flow matrices in the data, we
extrapolate it using the estimated structural model. The same pattern is observed for the other sectors. Data source:
NLSY79.

Effects on Sectoral Welfare. With worker heterogeneity, workers initially employed in sector 𝑠 are more
likely to stay in sector 𝑠 when the shock hits the sector. Thus, they suffer more from the one-time shock.

Proposition OA.1. Consider a one-time negative shock to sector 𝑠 of the form (OA.1) known to agents in
period 1. The inequality in Lemma 2 implies that, the canonical model, calibrated by matching the one-period
worker flow matrix, underestimates the negative welfare effect on workers initially employed in sector 𝑠, d𝑣𝑠1.

This result in turn implies that for any series of negative shocks to sector 𝑠, the canonical model
underestimates the negative welfare effect on workers initially employed in sector 𝑠, proving Proposition 3.

Effects on Sectoral Employment. The following proposition characterizes the condition under which the
canonical model overestimates the decline in employment in sector 𝑠 in period 𝑡 > 1.

Proposition OA.2. Consider a one-time negative shock to sector 𝑠 of the form (OA.1) known to agents
in period 1. Under Assumption 3, there exists a decreasing function 𝐵 : N → N such that the canonical
model overestimates the decline in employment in sector 𝑠 in period 𝑡 in response to the shock if and only if
|𝑡 − 𝜏| ≤ 𝐵(𝑡 ∧ 𝜏), where 𝑡 ∧ 𝜏 denotes the minimum of 𝑡 and 𝜏.

When |𝑡 − 𝜏| and/or 𝑡 ∧ 𝜏 are small, the canonical model calibrated by matching the one-period worker
flow matrix overestimates the decline in employment in sector 𝑠 in period 𝑡 in response to the shock, 𝜕 ln ℓ𝑠,𝑡

𝜕𝑤𝑠,𝜏
.1

The result implies that whether the models without worker heterogeneity overestimate or underestimate
labor reallocation depends on the time horizon. On the one hand, as discussed in Lemma 2, the canonical
model overestimates the mobility of workers across sectors, leading to overestimation of the decline in

1 If 𝑤 is log wage, this measures the elasticity of sectoral employment with respect to sectoral wages.
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Figure OA.2. Differences in the Response of Sectoral Employment

Notes: This figure plots the values of 𝜕 ln ℓ𝑠,𝑡
𝜕𝑤𝑠,𝜏

∣∣∣
canonical

− 𝜕 ln ℓ𝑠,𝑡
𝜕𝑤𝑠,𝜏

∣∣∣
data

for 1 ≤ 𝑡, 𝜏 ≤ 20. These derivatives are calculated

from equation (11) using the worker flow matrices F𝑘 from the NLSY79 data for 𝜕 ln ℓ𝑠,𝑡
𝜕𝑤𝑠,𝜏

∣∣∣
data

and using the worker flow

matrices implied by the canonical model for 𝜕 ln ℓ𝑠,𝑡
𝜕𝑤𝑠,𝜏

∣∣∣
canonical

.

employment in a negatively affected sector. This intuition is what Proposition OA.2 describes when |𝑡 − 𝜏|
and/or 𝑡 ∧ 𝜏 are small; i.e., when the shock is recently known or when the period affected by the shock is
close to the period of interest. On the other hand, in the canonical model, workers have relatively lower
probabilities of remaining in a sector, which implies that their sector choices in a given period do not have
long-lasting impacts on their future sector choices. This aspect works in the opposite direction to our previous
intuition and can become dominant if |𝑡 − 𝜏| and/or 𝑡 ∧ 𝜏 are large enough. For example, suppose that 𝑡 is
much larger than 𝜏. A negative shock to a sector’s wage in period 𝜏 reduces employment in the sector around
that period. However, this reduced employment has only a limited impact on employment in the sector in the
distant period 𝑡 in the canonical model. Figure OA.2 plots the relative size of the decline in employment of
sector 𝑠 in period 𝑡 in response to a shock to the period 𝜏 wage predicted by the canonical model and that
implied by the data. As expected, the decline is overestimated in the canonical model for small 𝑡 or 𝜏 or small
|𝑡 − 𝜏| (red cells). In short, the canonical model tends to overestimate the short-term impact of shocks on
sectoral employment but underestimates their long-term effects. In particular, within a 7-year time horizon,
the canonical model consistently overestimates the impact of shocks on sectoral employment.

OA.1.3 Two-Sector Model

In this section we consider a special case of our model with two sectors, S = {1, 2}. The results in this
section will be used for the proof of Lemma 2.
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For simplicity, we assume that there are a finite number of worker types. These types are indexed by 𝜔,
and the population share of type 𝜔 is 𝜃𝜔 ∈ (0, 1). We denote the transition matrix of type-𝜔 workers by

𝐹 𝜔 =

(
𝛼̄𝜔 𝛼𝜔
𝛽𝜔 𝛽𝜔

)
,

where 𝛼̄𝜔 = 1− 𝛼𝜔 and 𝛽𝜔 = 1− 𝛽𝜔 .
By induction, we can obtain a general formula for the elements of the matrix 𝐹 𝑘𝜔 .

Lemma OA.1. 𝐹 𝑘𝜔 has the following form:

𝐹 𝑘𝜔 =

(
1− 𝛼𝜔 𝑓

𝑘(𝛼̄𝜔 + 𝛽𝜔) 𝛼𝜔 𝑓
𝑘(𝛼̄𝜔 + 𝛽𝜔)

𝛽𝜔 𝑓
𝑘(𝛼̄𝜔 + 𝛽𝜔) 1− 𝛽𝜔 𝑓

𝑘(𝛼̄𝜔 + 𝛽𝜔)

)
,

where 𝑓 𝑘(𝑥) = 1−(𝑥−1)𝑘
2−𝑥 .

The steady-state sectoral employment share of type 𝜔 workers are given by(
Pr(sector 1|type 𝜔)
Pr(sector 2|type 𝜔)

)
=

( 𝛽𝜔
𝛼𝜔+𝛽𝜔
𝛼𝜔

𝛼𝜔+𝛽𝜔

)
≡
(
𝛽𝜔
𝛼̃𝜔

)
,

which gives

ℓ̃𝜔1 =
𝛽𝜔𝜃𝜔∑
𝜔′ 𝛽𝜔′𝜃𝜔′

and ℓ̃𝜔2 =
𝛼̃𝜔𝜃𝜔∑
𝜔′ 𝛼̃𝜔′𝜃𝜔′

.

Thus, the 𝑘-period worker flow matrix is given by

F𝑘 =


1−

∑
𝜔 𝛽𝜔𝜃𝜔𝛼𝜔 𝑓

𝑘(𝛼̄𝜔 + 𝛽𝜔)∑
𝜔 𝛽𝜔𝜃𝜔

∑
𝜔 𝛽𝜔𝜃𝜔𝛼𝜔 𝑓

𝑘(𝛼̄𝜔 + 𝛽𝜔)∑
𝜔 𝛽𝜔𝜃𝜔∑

𝜔 𝛼̃𝜔𝜃𝜔𝛽𝜔 𝑓
𝑘(𝛼̄𝜔 + 𝛽𝜔)∑

𝜔 𝛼̃𝜔𝜃𝜔
1−

∑
𝜔 𝛼̃𝜔𝜃𝜔𝛽𝜔 𝑓

𝑘(𝛼̄𝜔 + 𝛽𝜔)∑
𝜔 𝛼̃𝜔𝜃𝜔

.

OA.2 Structural Estimation

OA.2.1 Extrapolation Using the Structural Model

We estimate the structural model by matching the observed worker flow matrices. Specifically, we estimate
the number of worker types along with their respective steady-state instantaneous utility vectors 𝑤𝜔𝑖 and
switching costs 𝐶𝜔𝑖 𝑗 by matching 18 worker flow matrices (i.e., 216 moments). Note from the worker’s
sector choice problem (1) that only the ratio between these values and the parameter 𝜌 can be identified
from the observed worker flow matrices. Thus, we only estimate these ratios. Following Assumption 2, we
impose symmetry on the switching costs. The estimation process involves two steps: We first maximize the
likelihood of observing {F𝑘}18𝑘=1 to estimate { 1

𝜌
𝑤𝜔𝑖 ,

1
𝜌
𝐶𝜔𝑖 𝑗 } for a given number of worker types, then use the

Bayesian information criterion to determine the number of worker types.
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Table OA.1: Estimation Results

|Ω| = 2 Type 𝜔1 (30.7%) Type 𝜔2 (69.3%)

Sector Wage Switching Cost Wage Switching Cost

Agri/Const
Manufacturing
Commu/Trade

Services/Others

0.580.60
0.66
0.77

 0.00 1.54 1.69 1.55
1.54 0.00 1.34 1.41
1.69 1.34 0.00 0.98
1.55 1.41 0.98 0.00

 1.021.02
1.00
1.06

 0.00 4.62 5.63 5.46
4.62 0.00 4.87 4.94
5.63 4.87 0.00 3.72
5.46 4.94 3.72 0.00



0.49 0.13 0.15 0.23

0.09 0.51 0.18 0.22

0.06 0.11 0.56 0.28

0.06 0.09 0.19 0.66

1 2 3 4

1

2

3

4

0.97 0.01 0.00 0.01

0.01 0.97 0.01 0.02

0.00 0.01 0.94 0.05

0.00 0.00 0.01 0.98

1 2 3 4

1

2

3

4

0
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Figure OA.3. Type-Specific Transition Matrix

Table OA.1 shows the estimation result. The Bayesian information criterion supports the model with two
worker types. Figure OA.3 plots the resulting transition matrix for each type of worker. The first type has
a comparative advantage in non-manufacturing sectors and low switching costs. Thus, workers of this type
switch sectors frequently, as indicated by the small diagonal elements of the transition matrix in Figure OA.3.
In contrast, the second type has much higher switching costs, so workers of this type rarely move to other
sectors. In Section OA.2.3, we show how to interpret the figures in Table OA.1. In particular, paying one unit
of switching costs means paying 3.25% of lifetime consumption. Thus, the switching costs in Table OA.1
are at most less than 20% of lifetime consumption. This is smaller than the estimates of Artuç, Chaudhuri,
and McLaren (2010) (hereafter, ACM), who find that the average switching cost is at least 20% of lifetime
consumption. Our estimates are close to those of Artuç and McLaren (2015), in which the switching costs
are distributed around 12% of lifetime consumption.2

We also estimate primitives of the canonical model by matching the one-period worker flow matrix, F1;
See Figure OA.4 for the results. All parameters, including elements of the transition matrix, lie between the
corresponding parameters for the model with two worker types.

Model Fit. The fit of the model with two worker types, documented in Figures 3 and 4, is surprising for two
reasons. First, the degrees of freedom (19 parameters) are much smaller than the number of moments we
target (216 moments).3 Second, the dynamic discrete choice framework imposes systematic restrictions on

2 As Artuç and McLaren (2015) argue, one reason for the smaller estimates is the inclusion of sector-specific nonpecuniary
benefits in the model, which are absent in ACM’s model.

3 Suppose we want to match only the 1-year worker flow matrix. We can perfectly match this matrix with only one type of
worker if we can choose an arbitrary transition matrix for this type. In terms of degrees of freedom, we match 𝑁(𝑁 − 1) values with
𝑁(𝑁 − 1) parameters, where 𝑁 = 4 is the number of sectors. Suppose we also want to match one more worker flow matrix. This
exercise can be seen as matching the level and slope of the dots in Figure 2. At least in terms of degrees of freedom, we can achieve
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Wage Switching Cost0.870.85
0.84
1.00

 0.00 2.86 2.96 3.16
2.86 0.00 2.48 2.89
2.96 2.48 0.00 2.23
3.16 2.89 2.23 0.00



(a) Primitives

0.81 0.05 0.05 0.09

0.04 0.78 0.08 0.10

0.03 0.05 0.76 0.16

0.02 0.02 0.05 0.91

1 2 3 4
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(b) Transition Matrix

Figure OA.4. Estimation Result: Canonical Model
Notes: Panel (a) shows the estimated values of the primitives of the canonical model. The four sectors are Agriculture
and Construction; Manufacturing; Communications and Trade; and Services and Others. Panel (b) shows the resulting
transition matrix (or, equivalently, one-year worker flow matrix).

the model-implied worker flow matrices, so we would not be able to match every worker flow matrix series
even with an infinite number of worker types.

The flexibility due to worker heterogeneity, characterized in Lemma 2, is necessary to match the observed
worker flow matrices. As seen in Section 4.2, the canonical model with one type of workers fails to
match the observed worker flow matrices. Table OA.1 clearly reveals why the canonical model significantly
underestimates longer-run staying probabilities. Workers of the second type rarely change sectors and
have comparative advantage in manufacturing. Thus, conditioning on the fact that workers have previously
self-selected into the manufacturing sector greatly increases the probability that they are the second type,
and thus increases the probability that they will stay or choose again the manufacturing sector in subsequent
periods. While the fit of the model improves substantially with two types of workers, the additional increase
in fit from adding more types of workers is negligible, causing the Bayesian information criterion to choose
the two-type worker model.

Identification. Comparing the fits of the models does not necessarily identify the true number of worker
types, let alone the fact that two worker types cannot capture the multifaceted nature of real-world worker
differences. However, a key feature of our approach is that it does not require identification of all elements
of the true model. As long as the estimated model closely approximates the observed worker flow matrix
series, our sufficient statistics result ensures that the model always provides valid counterfactuals for the
outcome of interest—namely, aggregate welfare and employment. This feature distinguishes our approach
from the latent variable approach in the literature, such as the finite mixture model and k-means clustering

this with only two types of workers: matching 2𝑁(𝑁 − 1) values with 2𝑁(𝑁 − 1) + 1 parameters (𝑁(𝑁 − 1) parameters for each
transition matrix, and 1 for the type share). However, we also want to match the overall shape of the dots in Figure 2, and confine
ourselves to the case in which the type-specific transition matrices are generated by the structural primitives. Thus, we end up with
19 parameters that can be used to match 216 moments.
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(e.g., Arcidiacono and Jones, 2003; Heckman and Singer, 1984; Bonhomme, Lamadon, and Manresa, 2022),
in which the validity of counterfactual predictions requires a higher level of confidence in identification.

OA.2.2 Alternative Methods of Extrapolation

Pure Extrapolation. Suppose we have panel data of length 𝐾 < ∞. From the data, we can observe the
conditional probability

Pr
(
𝑠𝑡+𝑘 = 𝑠𝑘 |𝑠𝑡 = 𝑠0, 𝑠𝑡+1 = 𝑠1, · · · , 𝑠𝑡+𝑘−1 = 𝑠𝑘−1

)
,

for all 𝑠0, 𝑠1, . . . , 𝑠𝑘 ∈ S and 𝑘 less than 𝐾 . To extrapolate the probabilities with 𝑘 greater than or equal to
𝐾 , we truncate the history and assume the following:

Pr
(
𝑠𝑡+𝑘 = 𝑠𝑘

∣∣𝑠𝑡 = 𝑠0, 𝑠𝑡+1 = 𝑠1, · · · , 𝑠𝑡+𝑘−1 = 𝑠𝑘−1
)

= Pr
(
𝑠𝑡+𝑘 = 𝑠𝑘 |𝑠𝑡+𝑘−𝐾+1 = 𝑠𝑘−𝐾+1, · · · , 𝑠𝑡+𝑘−1 = 𝑠𝑘−1

)
.

In short, we assume a (𝐾 − 1)-th order Markov process and calculate the probabilities accordingly. In this
sense, this extrapolation is a strict generalization of the canonical model’s extrapolation, which is based on
the assumption that the sector choice follow a first-order Markov process.

Extrapolation Using Retention Model. The retention model developed in Henry (1971) is based on the
idea that Markov chains can be viewed as the conjunction of two processes: One determines whether workers
change sectors or not, and the other governs which sector they choose, conditional on sector switching. Any
transition matrix 𝐹 can be decomposed as follows:

𝐹 = 𝐹 diag + (𝐼 − 𝐹 diag)𝐹 off-diag,

where

(𝐹 diag)𝑖, 𝑗 = 𝐹 𝑖, 𝑗 · 1𝑖= 𝑗 ,

(𝐹 off-diag)𝑖, 𝑗 = Pr(𝑠𝑡+1 = 𝑗 |𝑠𝑡 = 𝑖, 𝑠𝑡+1 ̸= 𝑖) =
𝐹 𝑖, 𝑗

1− 𝐹 𝑖,𝑖
.

The idea of extrapolation is to treat the two parts of the process separately. For example, we can extrapolate
each element of the first part of the worker flow matrices to compute the full series of {(F𝑘)diag}. Then, we
can assume that the second part remains constant for all 𝑘: (F𝑘)off-diag = (F1)off-diag for all 𝑘 .
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OA.2.3 Interpretation of the Estimation Results

Denote the log wages and switching costs estimated under the normalization 𝜌 = 1 by ln𝑤0 and 𝐶0. Then,
the true log wages and switching costs are given by

ln𝑤 = 𝜌 · ln𝑤0 and 𝐶 = 𝜌 · 𝐶0.

Thus, when 𝐶0 = 1, the consumption equivalent variation of paying switching cost is implicitly given by

ln𝑤(1− CEV)
1− 𝛽

=
ln𝑤

1− 𝛽
− 𝜌,

which gives
CEV = 1− exp(−𝜌(1− 𝛽)) = 3.25%.

Likewise, our estimate of Fréchet parameter is 0.825, which means that the consumption equivalent variation
corresponding to one standard deviation lower realization of the idiosyncratic shock is given by

ln𝑤(1− CEV)
1− 𝛽

=
ln𝑤

1− 𝛽
− 2 · 𝜋𝜌√

6

where we multiply two because it is the difference between two realizations of idiosyncratic shocks. This
gives

CEV = 1− exp(−2𝜋𝜌(1− 𝛽)√
6

) = 8.12%.

In contrast, ACM assume linear utility function, so the consumption equivalent variation can be computed
as

𝑤(1− CEVACM)

1− 𝛽
=

𝑤

1− 𝛽
− 𝐶ACM

Thus, we have (given their normalization of average wages to one)

CEVACM =
(1− 𝛽)𝐶ACM

𝑤
= 19.7%

where we use the number in Panel IV of Table 3, which is used in their counterfactual exercises. Likewise, their
estimate of Fréchet parameter is 1.884, which means that the consumption equivalent variation corresponding
to one standard deviation lower realization of the idiosyncratic shock is given by

𝑤(1− CEVACM)

1− 𝛽
=

𝑤

1− 𝛽
− 2 · 𝜋𝜌ACM√

6

which gives

CEVACM =
2𝜋𝜌ACM(1− 𝛽)

𝑤
√
6

= 14.5%.
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OA.2.4 Estimation of 𝜌

Section 4.5 proposes a method to estimate the parameter 𝜌, which is based on the second equation of
Proposition 1:

d ln ℓ𝑡 =
∑

𝑠≥0,𝑘≥0

𝛽𝑘+1

𝜌
(F𝑠+𝑘 −F𝑠+𝑘+2)E𝑡−𝑠−1 d𝑤𝑡−𝑠+𝑘 .

We refer to this relation as a forward-looking infinite-order MA process, because it resembles infinite-order
MA processes, but involving forward-looking variables.

We first use equations (2) and (3) to prove equation (16) under the homogeneous worker assumption.
Imposing Assumption 1 and assumptions in Lemma A.2, these equations become

d𝑣𝜔𝑡 = d𝑤𝑡 + 𝛽𝐹 𝜔 E𝑡 d𝑣𝜔𝑡+1,

d ln ℓ𝜔𝑡+1 = 𝐹 𝜔 d ln ℓ𝜔𝑡 + 𝛽

𝜌
(𝐼 − (𝐹 𝜔)2)E𝑡 d𝑣𝜔𝑡+1. (OA.2)

Pre-multiplying one-period forwarded version of equation (OA.2) with 𝛽𝐹 𝜔 and taking expectation operator
E𝑡 , we have

𝛽𝐹 𝜔 E𝑡 d ln ℓ𝜔𝑡+2 = 𝛽(𝐹 𝜔)2 d ln ℓ𝜔𝑡+1 +
𝛽

𝜌
(𝐼 − (𝐹 𝜔)2)𝛽𝐹 𝜔 E𝑡 d𝑣𝜔𝑡+2. (OA.3)

Subtracting equation (OA.3) from equation (OA.2), we have

d ln ℓ𝜔𝑡+1 = 𝐹 𝜔 d ln ℓ𝜔𝑡 + 𝛽𝐹 𝜔(E𝑡 d ln ℓ𝜔𝑡+2 − 𝐹 𝜔 d ln ℓ𝜔𝑡+1) +
𝛽

𝜌
(𝐼 − (𝐹 𝜔)2)E𝑡 d𝑤𝑡+1.

Under the homogeneous worker assumption, we can rearrange this result to obtain equation (16):

d ln ℓ𝑡 = (F−1
1 + 𝛽F1) d ln ℓ𝑡+1 − 𝛽E𝑡 d ln ℓ𝑡+2 − 𝛽

𝜌
(F−1

1 −F1)E𝑡 d𝑤𝑡+1.

We refer to this equation as a forward-looking process with order 2 because we write a period 𝑡 variable as a
function of period 𝑡 + 1 and 𝑡 + 2 variables and a shock.

Now, suppose that there are 𝑁 number of worker types, 𝜔 ∈ {1, 2, . . . , 𝑁}. We derive a recursive
representation of the form

d ln ℓ𝑡 =

𝐾∑
𝑘=1

Γ𝑘 E𝑡 d ln ℓ𝑡+𝑘 + 𝛽

𝜌

𝐾 ′+1∑
𝑘=1

Λ𝑘 E𝑡 d𝑤𝑡+𝑘 .

We refer to this equation as a forward-looking process with order (𝐾, 𝐾 ′). Note that the change in aggregate
labor supply can be written as

d ln ℓ𝑡+1 = Ē𝜔[d ln ℓ𝜔𝑡+1] = 𝐿1 d ln ℓ
1
𝑡+1 + 𝐿2 d ln ℓ

2
𝑡+1 + · · ·+ 𝐿𝑁 d ln ℓ𝑁𝑡+1,

where each d ln ℓ𝜔𝑡+1 follows a forward-looking process with order w, and 𝐿𝜔 is a diagonal matrix, whose
𝑖-th diagonal element is given by the steady-state proportion of type 𝜔 in sector 𝑖. Granger and Morris
(1976) show that the scalar-weighted sum of 𝑁 number of autoregressive processes of order 2 follows an
autoregressive process of order at most 2𝑁 . Here, we instead have diagonal-matrix-weighted sum of 𝑁
number of forward-looking process of order 2, but we can apply a modified version of their proof to show

9



proposition. Due to an invertibility issue, we need forward-looking process of order (4𝑁−2, 4𝑁−4) instead
of order 2𝑁 . The next subsection is devoted to the proof of Proposition OA.3.

Proposition OA.3. If the number of types is 𝑁 , d ln ℓ𝑡 has a recursive representation of the form

d ln ℓ𝑡 =
4𝑁−2∑
𝑘=1

Γ𝑘 E𝑡 d ln ℓ𝑡+𝑘 + 𝛽

𝜌

4𝑁−3∑
𝑘=1

Λ𝑘 E𝑡 d𝑤𝑡+𝑘 .

OA.2.4.1 Proof of Proposition OA.3

We prove this proposition for the case with 𝑁 = 2. The same proof can be inductively applied to show the
case with 𝑁 > 2. For the case with two worker types, aggregate labor supply is given by

d ln ℓ𝑡 = 𝐿1 d ln ℓ
1
𝑡 + 𝐿2 d ln ℓ

2
𝑡 , (OA.4)

where

d ln ℓ1𝑡+1 − 𝛽𝐹 1 E𝑡 d ln ℓ1𝑡+2 = 𝐹 1 d ln ℓ1𝑡 − 𝛽(𝐹 1)2 d ln ℓ1𝑡+1 +
𝛽

𝜌
(𝐼 − (𝐹 1)2)E𝑡 d𝑤𝑡+1, (OA.5)

d ln ℓ2𝑡+1 − 𝛽𝐹 2 E𝑡 d ln ℓ2𝑡+2 = 𝐹 2 d ln ℓ2𝑡 − 𝛽(𝐹 2)2 d ln ℓ2𝑡+1 +
𝛽

𝜌
(𝐼 − (𝐹 2)2)E𝑡 d𝑤𝑡+1. (OA.6)

Using equation (OA.5) to cancel out d ln ℓ1𝑡 from equation (OA.4), we have

𝐿1((𝐹
1)−1 + 𝛽𝐹 1)𝐿−11 d ln ℓ𝑡+1 − 𝛽E𝑡 d ln ℓ𝑡+2 − d ln ℓ𝑡

= 𝐿1((𝐹
1)−1 + 𝛽𝐹 1)(d ln ℓ1𝑡+1 + 𝐿−11 𝐿2 d ln ℓ

2
𝑡+1)− 𝛽E𝑡(𝐿1 d ln ℓ1𝑡+2 + 𝐿2 d ln ℓ

2
𝑡+2)− (𝐿1 d ln ℓ

1
𝑡 + 𝐿2 d ln ℓ

2
𝑡 )

= 𝐿1(𝐹
1)−1

(
(𝐼 + 𝛽(𝐹 1)2) d ln ℓ1𝑡+1 − 𝛽𝐹 1 E𝑡 d ln ℓ1𝑡+2 − 𝐹 1 d ln ℓ1𝑡

)
+ E𝑡 Ξ𝑡

= 𝐿1(𝐹
1)−1 𝛽

𝜌
(𝐼 − (𝐹 1)2)E𝑡 d𝑤𝑡+1 + E𝑡 Ξ𝑡 ,

where

Ξ𝑡 = 𝐿1((𝐹
1)−1 + 𝛽𝐹 1)𝐿−11 𝐿2 d ln ℓ

2
𝑡+1 − 𝛽𝐿2 d ln ℓ

2
𝑡+2 − 𝐿2 d ln ℓ

2
𝑡

= 𝐿1((𝐹
1)−1 + 𝛽𝐹 1)𝐿−11 𝐿2 d ln ℓ

2
𝑡+1 − 𝛽𝐿2 d ln ℓ

2
𝑡+2

− 𝐿2(𝐹
2)−1

(
((𝐼 + 𝛽(𝐹 2)2) d ln ℓ2𝑡+1 − 𝛽𝐹 2 d ln ℓ2𝑡+2 −

𝛽

𝜌
(𝐼 − (𝐹 2)2)E𝑡 d𝑤𝑡+1

)
=
(
𝐿1((𝐹

1)−1 + 𝛽𝐹 1)𝐿−11 𝐿2 − 𝐿2((𝐹
2)−1 + 𝛽𝐹 2)

)
d ln ℓ2𝑡+1 +

𝛽

𝜌
𝐿2((𝐹

2)−1 − 𝐹 2)E𝑡 d𝑤𝑡+1.

This can be rearranged to

𝐿1((𝐹
1)−1 + 𝛽𝐹 1)𝐿−11 d ln ℓ𝑡+1 − 𝛽E𝑡 d ln ℓ𝑡+2 − d ln ℓ𝑡

= 𝛽

𝜌

(
𝐿1((𝐹

1)−1 − 𝐹 1) + 𝐿2((𝐹
2)−1 − 𝐹 2)

)
E𝑡 d𝑤𝑡+1 +

(
𝐿1((𝐹

1)−1 + 𝛽𝐹 1)𝐿−11 − 𝐿2((𝐹
2)−1 + 𝛽𝐹 2)𝐿−12

)
𝐿2 d ln ℓ

2
𝑡+1,

or equivalently 𝑦𝑡 = Ψ𝑥𝑡 where

𝑦𝑡 = X d ln ℓ𝑡+1 − 𝛽E𝑡 d ln ℓ𝑡+2 − d ln ℓ𝑡 − 𝛽

𝜌
YE𝑡 d𝑤𝑡+1,
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𝑥𝑡 = d ln ℓ2𝑡+1,

X = 𝐿1((𝐹
1)−1 + 𝛽𝐹 1)𝐿−11 ,

Y = 𝐿1((𝐹
1)−1 − 𝐹 1) + 𝐿2((𝐹

2)−1 − 𝐹 2),

Ψ =
(
𝐿1((𝐹

1)−1 + 𝛽𝐹 1)𝐿−11 − 𝐿2((𝐹
2)−1 + 𝛽𝐹 2)𝐿−12

)
𝐿2.

From equation (OA.6), the law of motion of 𝑥𝑡 is given by

𝑥𝑡 = A𝑥𝑡+1 + BE𝑡+1 𝑥𝑡+2 + 𝜀𝑡+1,

where A = (𝐹 2)−1 + 𝛽𝐹 2, B = −𝛽𝐼, and 𝜀𝑡 =
𝛽

𝜌
C E𝑡 d𝑤𝑡+1 where C = −((𝐹 2)−1 − 𝐹 2).

Lemma OA.2. Suppose 𝑥𝑡 = A𝑥𝑡+1+B𝑥𝑡+2+ 𝜀𝑡+1 ∈ R𝑆 and 𝑦𝑡 = Z𝑥𝑡 where A,B ∈ R𝑆×𝑆 are invertible
and Z ∈ R𝑆×𝑆 is of rank 𝑆 − 1. Then, we can always write

𝑦𝑡 = Θ1𝑦𝑡+1 +Θ2𝑦𝑡+2 +Θ3𝑦𝑡+3 +Θ4𝑦𝑡+4 +Ω1𝜀𝑡+1 +Ω2𝜀𝑡+2 +Ω3𝜀𝑡+3

for some matrices Θ𝑖 = Θ𝑖(A,B,Z) and Ω𝑖 = Ω𝑖(A,B,Z).

Proof. Write x =

(
𝑥𝑡+3
𝑥𝑡+4

)
, then we have

𝑦𝑡+4 =
(
O Z

)
x ≡ M1x,

𝑦𝑡+3 =
(
Z O

)
x ≡ M2x,

𝑦𝑡+2 = Z(A𝑥𝑡+3 + B𝑥𝑡+4 + 𝜀𝑡+3) =
(
ZA ZB

)
x + Z𝜀𝑡+3 ≡ M3x + Z𝜀𝑡+3,

𝑦𝑡+1 = Z(A𝑥𝑡+2 + B𝑥𝑡+3 + 𝜀𝑡+2) = Z(A(A𝑥𝑡+3 + B𝑥𝑡+4 + 𝜀𝑡+3) + B𝑥𝑡+3 + 𝜀𝑡+2)

=
(
Z(A2 + B) ZAB

)
x + ZA𝜀𝑡+3 + Z𝜀𝑡+2 ≡ M4x + ZA𝜀𝑡+3 + Z𝜀𝑡+2,

𝑦𝑡 = Z(A𝑥𝑡+1 + B𝑥𝑡+2 + 𝜀𝑡+1)

= Z(A(A(A𝑥𝑡+3 + B𝑥𝑡+4 + 𝜀𝑡+3) + B𝑥𝑡+3 + 𝜀𝑡+2) + B(A𝑥𝑡+3 + B𝑥𝑡+4 + 𝜀𝑡+3) + 𝜀𝑡+1)

=
(
Z(A3 + AB + BA) Z(A2B + B2)

)
x + Z(A2 + B)𝜀𝑡+3 + ZA𝜀𝑡+2 + Z𝜀𝑡+1

≡ M5x + Z(A2 + B)𝜀𝑡+3 + ZA𝜀𝑡+2 + Z𝜀𝑡+1.

Note that N1 ≡ M1 is of rank 𝑆 − 1, N2 ≡
(

M1

M2

)
is of rank 2(𝑆 − 1). If all rows of M3 can be written as

a linear combination of rows of N2, then we can write 𝑦𝑡 = Θ1𝑦𝑡+1 + Θ2𝑦𝑡+2. If not, N3 ≡
(

N2

M3

)
is of

rank at least 2(𝑆 − 1) + 1. By the same logic, we either prove the result, or N4 ≡
(

N3

M4

)
is of rank (at least)

2𝑆. Thus, all rows of M5 can be written as a linear combination of rows of N4. This implies that we can find
matrices Θ1, · · · ,Θ4 such that

M5 = Θ1M4 +Θ2M3 +Θ3M2 +Θ4M1.
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Thus, we only need

Z(A2 + B)𝜀𝑡+3 + ZA𝜀𝑡+2 + Z𝜀𝑡+1 = Θ1(ZA𝜀𝑡+3 + Z𝜀𝑡+2) +Θ2(Z𝜀𝑡+3) + Ω1𝜀𝑡+1 +Ω2𝜀𝑡+2 +Ω3𝜀𝑡+3

or
Ω1 = Z, Ω2 = ZA −Θ1Z, and Ω3 = Z(A2 + B)−Θ1ZA −Θ2Z.

Lemma OA.3. Ψ is non-invertible.

Proof. Denote population share of type 𝜔 as 𝜃𝜔, transition matrix as 𝐹 𝜔, and stationary distribution over
sectors as 𝜋𝜔 . Define 𝜋 ≡

∑
𝜔 𝜃

𝜔𝜋𝜔 , then we have

𝜋T𝐿𝜔 = 𝜃𝜔(𝜋𝜔)T and (𝜋𝜔)T𝐹 𝜔 = (𝜋𝜔)T.

Thus,

𝜋TΨ = 𝜋T
(
𝐿1((𝐹

1)−1 + 𝛽𝐹 1)𝐿−11 − 𝐿2((𝐹
2)−1 + 𝛽𝐹 2)𝐿−12

)
𝐿2 = (𝜋T + 𝛽𝜋T − 𝜋T − 𝛽𝜋T)𝐿2 = 0.

By combining the previous two lemmas, we can write

𝑦𝑡 = Θ1𝑦𝑡+1 +Θ2 E𝑡+1 𝑦𝑡+2 +Θ3 E𝑡+1 𝑦𝑡+3 +Θ4 E𝑡+1 𝑦𝑡+4 +Ω1𝜀𝑡+1 +Ω2 E𝑡+1 𝜀𝑡+2 +Ω3 E𝑡+1 𝜀𝑡+3,

where Θ𝑖 = Θ𝑖(A,B,Ψ) and Ω𝑖 = Ω𝑖(A,B,Ψ). Plugging in the definitions of 𝑦𝑡 and 𝜀𝑡 , we have

−d ln ℓ𝑡 + X d ln ℓ𝑡+1 − 𝛽E𝑡 d ln ℓ𝑡+2 − 𝛽

𝜌
YE𝑡 d𝑤𝑡+1 = Θ1(−d ln ℓ𝑡+1 + XE𝑡 d ln ℓ𝑡+2 − 𝛽E𝑡 d ln ℓ𝑡+3 − 𝛽

𝜌
YE𝑡 d𝑤𝑡+2)

+ Θ2(−E𝑡 d ln ℓ𝑡+2 + XE𝑡 d ln ℓ𝑡+3 − 𝛽E𝑡 d ln ℓ𝑡+4 − 𝛽

𝜌
YE𝑡 d𝑤𝑡+3)

+ Θ3(−E𝑡 d ln ℓ𝑡+3 + XE𝑡 d ln ℓ𝑡+4 − 𝛽E𝑡 d ln ℓ𝑡+5 − 𝛽

𝜌
YE𝑡 d𝑤𝑡+4)

+ Θ4(−E𝑡 d ln ℓ𝑡+4 + XE𝑡 d ln ℓ𝑡+5 − 𝛽E𝑡 d ln ℓ𝑡+6 − 𝛽

𝜌
YE𝑡 d𝑤𝑡+5)

+ 𝛽

𝜌
Ω1CE𝑡 d𝑤𝑡+2 + 𝛽

𝜌
Ω2CE𝑡 d𝑤𝑡+3 + 𝛽

𝜌
Ω3CE𝑡 d𝑤𝑡+4

or equivalently

d ln ℓ𝑡 = (Θ1 + X) d ln ℓ𝑡+1 + (−Θ1X +Θ2 − 𝛽𝐼)E𝑡 d ln ℓ𝑡+2 + (𝛽Θ1 −Θ2X +Θ3)E𝑡 d ln ℓ𝑡+3
+ (𝛽Θ2 −Θ3X +Θ4)E𝑡 d ln ℓ𝑡+4 + (𝛽Θ3 −Θ4X)E𝑡 d ln ℓ𝑡+5 + (𝛽Θ4)E𝑡 d ln ℓ𝑡+6
− 𝛽

𝜌
YE𝑡 d𝑤𝑡+1 + ( 𝛽

𝜌
Θ1Y − 𝛽

𝜌
Ω1C)E𝑡 d𝑤𝑡+2 + ( 𝛽

𝜌
Θ2Y − 𝛽

𝜌
Ω2C)E𝑡 d𝑤𝑡+3 + ( 𝛽

𝜌
Θ3Y − 𝛽

𝜌
Ω3C)E𝑡 d𝑤𝑡+4 + 𝛽

𝜌
Θ4YE𝑡 d𝑤𝑡+5.

This can be rearranged to obatin Proposition OA.3.4

d ln ℓ𝑡 = Γ1 d ln ℓ𝑡+1 + Γ2 E𝑡 d ln ℓ𝑡+2 + Γ3 E𝑡 d ln ℓ𝑡+3 + Γ4 E𝑡 d ln ℓ𝑡+4 + Γ5 E𝑡 d ln ℓ𝑡+5 + Γ6 E𝑡 d ln ℓ𝑡+6
+ 𝛽

𝜌
(Λ1 E𝑡 d𝑤𝑡+1 +Λ2 E𝑡 d𝑤𝑡+2 +Λ3 E𝑡 d𝑤𝑡+3 +Λ4 E𝑡 d𝑤𝑡+4 +Λ5 E𝑡 d𝑤𝑡+5).

4 If the number of types is 3, then we need (d ln ℓ𝑡+1, · · · , d ln ℓ𝑡+10), and with the number of types𝑊 , we need (d ln ℓ𝑡+1, · · · ,
d ln ℓ𝑡+4𝑊−2).
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OA.3 Applications

OA.3.1 Application 1: Hypothetical Trade Liberalization

Closing the Model. We consider the first version of the model in ACM, in which all sectors produce tradable
output, and world prices are exogenously determined. Each sector 𝑠 has a constant elasticity of substitution
(CES) production function

𝑦𝑠𝑡 = 𝜓𝑠(𝛼𝑠(𝐿𝑠𝑡 )
𝜌𝑠 + (1− 𝛼𝑠)(𝐾𝑠𝑡 )

𝜌𝑠)
1
𝜌𝑠

with fixed sector-specific capital𝐾𝑠𝑡 = 1 normalized to one. The parameters should satisfy𝛼𝑠 ∈ (0, 1), 𝜌𝑠 < 1,

and 𝜓𝑠 > 0. Then, the sectoral wage is given by the marginal productivity of labor

𝑤𝑠𝑡 = 𝑝𝑠𝑡 𝛼
𝑠𝜓𝑠(𝐿𝑠𝑡 )

𝜌𝑠−1(𝛼𝑠(𝐿𝑠𝑡 )
𝜌𝑠 + (1− 𝛼𝑠))

1−𝜌𝑠

𝜌𝑠 ,

where 𝑝𝑠𝑡 is the domestic price of the sector-𝑠 good. Without loss of generality, we normalize the domestic
prices to one in the initial steady state prior to the shock. Finally, workers have identical Cobb-Douglas with
shares 𝜇𝑠 for sector 𝑠.

We follow the calibration strategy of ACM (except for the number of sectors). We set the values of 𝛼𝑠, 𝜌𝑠,
and 𝜓𝑠 to minimize the Euclidean distance between the model-implied values of sectoral wages, sectoral
labor shares, and sector share of GDP; and the values computed from the data. The values of 𝜇𝑠 are calibrated
using consumption shares from the Bureau of Labor Statistics (BLS). The obtained parameter values are
summarized in Table OA.2.

Table OA.2: Parameter Values

Sector 𝛼𝑠 𝜌𝑠 𝜓𝑠 𝜇𝑠

Agri./Const. 0.637 0.517 0.684 0.37
Manufacturing 0.420 0.487 1.094 0.3
Commu./Trade 0.600 0.561 1.069 0.08
Services/Others 0.401 0.530 1.442 0.25

OA.3.2 Application 2: The China Shock

OA.3.2.1 CDP’s Model Extended with Worker Heterogeneity

In this section and the next, we closely follow the modeling decisions and notation of Caliendo, Dvorkin, and
Parro (2019) (hereafter, CDP). See CDP for more details and equilibrium characterization. CDP consider a
world with 𝑁 locations (indexed by 𝑛 or 𝑖) and 𝐽 sectors (indexed by 𝑗 or 𝑘), where sector 𝑗 = 0 represents
non-employment. Time is discrete and indexed by 𝑡 ∈ N0. In each location-sector combination, (𝑛, 𝑗), there
is a competitive local labor market.
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Heterogeneous Workers. In each location 𝑛, there is a continuum of forward-looking workers who optimally
decide which sector to supply their labor for each period. The heterogeneity of workers are indexed by 𝜔.
Similar to equation (1), the value of a worker of type 𝜔 who is employed in sector 𝑗 at period 𝑡 is given by

𝑉
𝑛,𝜔
𝑗𝑡 = 𝑈(𝑐𝑛,𝜔𝑗𝑡 ) + max

𝑘
{𝛽E𝑡 𝑉𝑛,𝜔𝑘𝑡+1 − 𝐶

𝑛,𝜔
𝑗𝑘 + 𝜌 · 𝜀𝑘𝑡}

where 𝑐𝑛,𝜔𝑗𝑡 =
∏
𝑘(𝑐

𝑘,𝑛,𝜔
𝑗𝑡 )𝛼

𝑘 is a Cobb-Douglas aggregator across local sectoral goods, with the correspond-
ing price index 𝑃𝑛𝑡 =

∏
𝑘(𝑃

𝑛𝑘
𝑡 /𝛼

𝑘)𝛼
𝑘 . Following CDP, we assume𝑈(𝑐) = log 𝑐.

Households employed in a local labor market (𝑛, 𝑗) earn a nominal wage of 𝑤𝑛 𝑗𝑡 , consuming 𝑐𝑛,𝜔𝑗𝑡 =

𝑐𝑛 𝑗,𝜔 · 𝑤𝑛 𝑗𝑡 /𝑃𝑛𝑡 units of consumption aggregate where 𝑐𝑛 𝑗,𝜔 is a type-specific shifter representing non-
pecuniary sectoral preferences. Non-employed household (who chooses sector 𝑗 = 0) consumes 𝑐𝑛,𝜔0𝑡 = 𝑏𝑛,𝜔

units of consumption aggregate in terms of home production. The ex-ante value and transition probabilities
are characterized as in equations (2) and (3):

𝑣
𝑛,𝜔
𝑗𝑡 = 𝑈(𝑐𝑛,𝜔𝑗𝑡 ) + 𝜌 ln

∑
𝑘

(exp(𝛽E𝑡 𝑣𝑛,𝜔𝑘𝑡+1)/ exp(𝐶
𝑛,𝜔
𝑗𝑘 ))1/𝜌, (OA.7)

𝐹
𝑛,𝜔
𝑗𝑘𝑡 =

(exp(𝛽E𝑡 𝑣𝑛,𝜔𝑘𝑡+1)/ exp(𝐶
𝑛,𝜔
𝑗𝑘 ))1/𝜌∑

𝑘′(exp(𝛽E𝑡 𝑣
𝑛,𝜔
𝑘′𝑡+1)/ exp(𝐶

𝑛,𝜔
𝑗𝑘′ ))

1/𝜌
. (OA.8)

Thus, the law of motion of sectoral labor supply of type 𝜔 workers in region 𝑛 is

ℓ
𝑛,𝜔
𝑘𝑡+1 =

∑
𝑗

𝐹
𝑛,𝜔
𝑗𝑘𝑡 ℓ

𝑛,𝜔
𝑗𝑡 . (OA.9)

Finally, let 𝐿𝑛 𝑗𝑡 =
∑

𝜔 ℓ
𝑛,𝜔
𝑗𝑡+1 be the total labor supply to local labor market (𝑛, 𝑗). In this environment,

Assumption 1 holds, and we implicitly maintain Assumption 2 (with 𝑛 superscript) as well.

Production. For each sector 𝑗 , there is a continuum of different varieties of intermediate goods. Each
region-sector combination draws a variety-specific productivity 𝑧𝑛 𝑗 , which follows a Fréchet distribution with
the dispersion parameter 𝜃 𝑗 . Without loss, each variety is indexed by 𝑧 𝑗 = (𝑧1 𝑗 , 𝑧2 𝑗 , . . . , 𝑧𝑁 𝑗). In each local
labor market, (𝑛, 𝑗), there is a continuum of perfectly competitive firms producing variety 𝑧 𝑗 . They have a
Cobb-Douglas technology combining labor (𝑙), structures (ℎ), and local sectoral goods from all sectors (𝑀):

𝑞
𝑛 𝑗
𝑡 = 𝑧𝑛 𝑗(𝐴𝑛 𝑗𝑡 (ℎ𝑛 𝑗𝑡 )𝜉

𝑛

(𝑙𝑛 𝑗𝑡 )1−𝜉
𝑛

)𝛾
𝑛 𝑗
∏
𝑘

(𝑀𝑛 𝑗,𝑛𝑘
𝑡 )𝛾

𝑛 𝑗,𝑛𝑘

,

where 𝐴𝑛 𝑗𝑡 is a sector-region specific productivity. Thus, the unit cost of producing this intermediate good is

𝑥
𝑛 𝑗
𝑡

𝑧𝑛 𝑗(𝐴𝑛 𝑗𝑡 )𝛾𝑛 𝑗
where 𝑥𝑛 𝑗𝑡 = 𝐵𝑛 𝑗((𝑟𝑛 𝑗𝑡 )𝜉

𝑛

(𝑤𝑛 𝑗𝑡 )1−𝜉
𝑛

)𝛾
𝑛 𝑗
∏
𝑘

(𝑃𝑛𝑘𝑡 )𝛾
𝑛 𝑗,𝑛𝑘

, (OA.10)

where 𝐵𝑛 𝑗 is a constant, 𝑟𝑛 𝑗𝑡 is the rental price of structures, and 𝑃𝑛𝑘𝑡 is the price of the local sector-𝑘 goods.
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Local sectoral goods are produced from intermediate goods in a competitive way, which are then used as
final consumption and as materials for the production of intermediate varieties. The technology is given by:

𝑄
𝑛 𝑗
𝑡 =

(∫
(𝑞𝑛 𝑗𝑡 (𝑧 𝑗))1−1/𝜂

𝑛 𝑗

d𝜙 𝑗(𝑧 𝑗)

)𝜂𝑛 𝑗/(𝜂𝑛 𝑗−1)
,

where 𝑞𝑛 𝑗𝑡 (𝑧 𝑗) is the quantity of variety 𝑧 𝑗 used in the production, and 𝜙 𝑗(·) is the joint distribution of the
vector 𝑧 𝑗 . The intermediate good of variety 𝑧 𝑗 is sourced from a country with the minimum price, taking into
account bilateral iceberg-type trade costs (𝜅). The minimized price is then given by

𝑝
𝑛 𝑗
𝑡 (𝑧 𝑗) = min

𝑖

{
𝜅
𝑛 𝑗,𝑖 𝑗
𝑡 𝑥

𝑖 𝑗
𝑡

𝑧𝑖 𝑗(𝐴𝑖 𝑗𝑡 )𝛾
𝑖 𝑗

}
.

Thus, the price of the local sectoral good is

𝑃
𝑛 𝑗
𝑡 = Γ

(
1+ 𝜃 𝑗 − 𝜂𝑛 𝑗

𝜃 𝑗

)
·

(∑
𝑖

(𝑥𝑖 𝑗𝑡 𝜅
𝑛 𝑗,𝑖 𝑗
𝑡 )−𝜃

𝑗

(𝐴𝑖 𝑗𝑡 )
𝜃 𝑗𝛾𝑖 𝑗

)−1/𝜃 𝑗

. (OA.11)

Finally, the share of total expenditure in local market (𝑛, 𝑗) on goods from market (𝑖, 𝑗) is given by

𝜋
𝑛 𝑗,𝑖 𝑗
𝑡 =

(𝑥𝑖 𝑗𝑡 𝜅
𝑛 𝑗,𝑖 𝑗
𝑡 )−𝜃

𝑗

(𝐴𝑖 𝑗𝑡 )
𝜃 𝑗𝛾𝑖 𝑗∑

𝑖′(𝑥
𝑖′ 𝑗
𝑡 𝜅

𝑛 𝑗,𝑖′ 𝑗
𝑡 )−𝜃 𝑗 (𝐴𝑖

′ 𝑗
𝑡 )𝜃 𝑗𝛾𝑖

′ 𝑗
. (OA.12)

Structure Rentier. There is a continuum of structure rentiers in each region 𝑛. They own the local structures

of fixed amount {𝐻𝑛 𝑗} 𝑗 and rent them to local firms. The received rents are aggregated at the global-level,
and rentiers in each region 𝑛 receive a constant share 𝜄𝑛 of the total global revenue:

𝜄𝑛𝜒𝑡 where 𝜒𝑡 =
∑
𝑖

∑
𝑘

𝑟 𝑖𝑘𝑡 𝐻
𝑖𝑘 .

Market Clearing. Market clearing for goods market, labor market, and structure market is given by

𝑋
𝑛 𝑗
𝑡 =

∑
𝑘

𝛾𝑛𝑘,𝑛 𝑗
∑
𝑖

𝜋𝑖𝑘,𝑛𝑘𝑡 𝑋 𝑖𝑘𝑡 + 𝛼 𝑗

(∑
𝑘

𝑤𝑛𝑘𝑡 𝐿
𝑛𝑘
𝑡 + 𝜄𝑛𝜒𝑡

)
, (OA.13)

𝑤
𝑛 𝑗
𝑡 𝐿

𝑛 𝑗
𝑡 = 𝛾𝑛 𝑗(1− 𝜉𝑛)

∑
𝑖

𝜋
𝑖 𝑗 ,𝑛 𝑗
𝑡 𝑋

𝑖 𝑗
𝑡 , (OA.14)

𝑟
𝑛 𝑗
𝑡 𝐻

𝑛 𝑗 = 𝛾𝑛 𝑗𝜉𝑛
∑
𝑖

𝜋
𝑖 𝑗 ,𝑛 𝑗
𝑡 𝑋

𝑖 𝑗
𝑡 , (OA.15)

where 𝑋𝑛 𝑗𝑡 is the total expenditure on sector 𝑗 good in region 𝑛.
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Equilibrium. Following CDP, we group exogenous state variables of the economy into time-varying ones
and time-invariant ones:

Θ𝑡 ≡ ({𝐴𝑛 𝑗𝑡 }𝑛, 𝑗 , {𝜅𝑛 𝑗,𝑖 𝑗𝑡 }𝑛,𝑖, 𝑗) and Θ̄ ≡ ({𝐶𝑛,𝜔𝑗𝑘 } 𝑗 ,𝑘,𝑛,𝜔, {𝐻𝑛 𝑗}𝑛, 𝑗 , {𝑐𝑛 𝑗,𝜔}𝑛, 𝑗,𝜔 , {𝑏𝑛,𝜔}𝑛,𝜔).

Given the initial distribution of labor and the path of exogenous state variables ({ℓ𝑛,𝜔𝑗0 } 𝑗 ,𝑛,𝜔 , {Θ𝑡}∞𝑡=0, Θ̄),
a sequential competitive equilibrium corresponds to a sequence of {𝐿𝑡 , 𝐹 𝑡 , 𝑣𝑡 , 𝑥𝑡 , 𝑃𝑡 , 𝜋𝑡 , 𝑋𝑡 , 𝑤𝑡 , 𝑟𝑡}∞𝑡=0,
where 𝐿𝑡 = {ℓ𝑛,𝜔𝑗𝑡 } 𝑗 ,𝑛,𝜔, 𝐹 𝑡 = {𝐹𝑛,𝜔𝑗𝑘𝑡 } 𝑗 ,𝑘,𝑛,𝜔, 𝑣𝑡 = {𝑣𝑛,𝜔𝑗𝑡 } 𝑗 ,𝑛,𝜔, 𝑥𝑡 = {𝑥𝑛 𝑗𝑡 }𝑛, 𝑗 , 𝑃𝑡 = {𝑃𝑛, 𝑗𝑡 }𝑛, 𝑗 ,
𝜋𝑡 = {𝜋𝑖 𝑗 ,𝑛 𝑗𝑡 }𝑖, 𝑗 ,𝑛, 𝑋𝑡 = {𝑋𝑛 𝑗𝑡 }𝑛, 𝑗 , 𝑤𝑡 = {𝑤𝑛 𝑗𝑡 }𝑛, 𝑗 , and 𝑟𝑡 = {𝑟𝑛 𝑗𝑡 }𝑛, 𝑗 , such that households optimally
make sector choice decisions, as described in (OA.7)–(OA.9); firms maximize their profits, as described
in (OA.10)–(OA.12); all markets clear, as described in (OA.13)–(OA.15). A stationary equilibrium is a
sequential competitive equilibrium such that {𝐿𝑡 , 𝐹 𝑡 , 𝑣𝑡 , 𝑥𝑡 , 𝑃𝑡 , 𝜋𝑡 , 𝑋𝑡 , 𝑤𝑡 , 𝑟𝑡} is time-invariant.

OA.3.2.2 Dynamic Hat Algebra with Worker Heterogeneity

Following CDP, we solve for the equilibrium in time differences. We denote by 𝑦̇𝑡+1 ≡ (𝑦1𝑡+1/𝑦
1
𝑡 , 𝑦

2
𝑡+1/𝑦

2
𝑡 , · · · )

the proportional change in any scalar or vector. The following proposition corresponds to Propositions 1 and
2 of CDP, but allowing for worker heterogeneity.

Proposition OA.4 (Solving the model). Suppose that the economy is initially starting from a stationary
equilibrium at period 𝑡 = 0. Up to the first-order approximation around a stationary equilibrium, given a
sequence of changes in exogenous state variables, {Θ̇𝑡}∞𝑡=1 satisfying lim𝑡→∞ Θ̇𝑡 = 1, known to agents in
period 𝑡 = 1, the solution to the sequential equilibrium in time differences does not require information on
the level of the exogenous state variables {Θ𝑡}∞𝑡=0 or Θ̄, and solves the following system of equations:

𝑣
𝑛 𝑗
𝑡 = 𝑣

𝑛 𝑗

0 +
∑
𝑘

𝛽𝑘F𝑘 ln

(
𝑤̇𝑛𝑡+𝑘

𝑃̇𝑛𝑡+𝑘
·
𝑤̇𝑛𝑡+𝑘−1
𝑃̇𝑛𝑡+𝑘−1

· · · · ·
𝑤̇𝑛1

𝑃̇𝑛1

)
,

𝐿
𝑛 𝑗
𝑡 = 𝐿

𝑛 𝑗

0 · exp

( 𝑡−2∑
𝑠=0

∞∑
𝑘=0

𝛽𝑘+1

𝜌
(F𝑛

𝑠+𝑘 −F𝑛
𝑠+𝑘+2) ln

(
𝑤̇𝑛𝑡−𝑠+𝑘
𝑃̇𝑛𝑡−𝑠+𝑘

·
𝑤̇𝑛𝑡−𝑠+𝑘−1
𝑃̇𝑛𝑡−𝑠+𝑘−1

· · · · ·
𝑤̇𝑛1

𝑃̇𝑛1

))
𝑗

,
𝑥̇
𝑛 𝑗

𝑡+1 = (𝐿̇𝑛 𝑗𝑡+1)
𝛾𝑛 𝑗 𝜉𝑛

(𝑤̇𝑛 𝑗𝑡+1)
𝛾𝑛 𝑗
∏
𝑘

(𝑃̇𝑛𝑘𝑡+1)
𝛾𝑛 𝑗,𝑛𝑘

,

𝑃̇
𝑛 𝑗

𝑡+1 =

(∑
𝑖

𝜋
𝑛 𝑗,𝑖 𝑗
𝑡 (𝑥̇𝑖 𝑗𝑡+1𝜅

𝑛 𝑗,𝑖 𝑗

𝑡+1 )−𝜃
𝑗

(𝐴̇𝑖 𝑗𝑡+1)
𝜃 𝑗𝛾𝑖 𝑗

)−1/𝜃 𝑗

,

𝜋
𝑛 𝑗,𝑖 𝑗

𝑡+1 = 𝜋
𝑛 𝑗,𝑖 𝑗
𝑡

(
𝑥̇
𝑖 𝑗

𝑡+1𝜅
𝑛 𝑗,𝑖 𝑗

𝑡+1

𝑃̇
𝑛 𝑗

𝑡+1

)−𝜃 𝑗

(𝐴̇𝑖 𝑗𝑡+1)
𝜃 𝑗𝛾𝑖 𝑗 ,

𝑋
𝑛 𝑗

𝑡+1 =
∑
𝑘

𝛾𝑛𝑘,𝑛 𝑗
∑
𝑖

𝜋
𝑖𝑘,𝑛𝑘
𝑡+1 𝑋 𝑖𝑘𝑡+1 + 𝛼 𝑗

(∑
𝑘

𝑤̇𝑛𝑘𝑡+1 𝐿̇
𝑛𝑘
𝑡+1𝑤

𝑛𝑘
𝑡 𝐿

𝑛𝑘
𝑡 + 𝜄𝑛𝜒𝑡+1

)
,

𝑤̇
𝑛 𝑗

𝑡+1 𝐿̇
𝑛 𝑗

𝑡+1𝑤
𝑛 𝑗
𝑡 𝐿

𝑛 𝑗
𝑡 = 𝛾𝑛 𝑗(1− 𝜉𝑛)

∑
𝑖

𝜋
𝑖 𝑗 ,𝑛 𝑗

𝑡+1 𝑋
𝑖 𝑗

𝑡+1,
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where 𝜒𝑡+1 =
∑
𝑖

∑
𝑘

𝜉 𝑖

1−𝜉 𝑖 𝑤̇
𝑖𝑘
𝑡+1 𝐿̇

𝑖𝑘
𝑡+1𝑤

𝑖𝑘
𝑡 𝐿

𝑖𝑘
𝑡 and 𝑤̇𝑛𝑡 is a vector whose 𝑗 th element is 𝑤̇𝑛 𝑗𝑡 .

Proof. The last five equations write the equilibrium conditions for the static multicountry interregional trade
model in time differences. See CDP for a proof of this representation. Note that the real wage in period 𝑡 can
be written as

𝑤
𝑛 𝑗
𝑡

𝑃𝑛𝑡
=
𝑤̇
𝑛 𝑗
𝑡

𝑃̇𝑛𝑡
·
𝑤̇
𝑛 𝑗

𝑡−1
𝑃̇𝑛𝑡−1

· · · · ·
𝑤̇
𝑛 𝑗

1

𝑃̇𝑛1

𝑤
𝑛 𝑗

0

𝑃𝑛0
.

Since the economy is initially starting from a stationary equilibrium at period 𝑡 = 0, we have

d ln

(
𝑤
𝑛 𝑗
𝑡

𝑃𝑛𝑡

)
= ln

(
𝑤̇
𝑛 𝑗
𝑡

𝑃̇𝑛𝑡
·
𝑤̇
𝑛 𝑗

𝑡−1
𝑃̇𝑛𝑡−1

· · · · ·
𝑤̇
𝑛 𝑗

1

𝑃̇𝑛1

)
. (OA.16)

Note that with shocks known to agent at period 𝑡 = 1, the sufficient statistics results of Proposition 1 can be
simplified to

d𝑣𝑡 =
∞∑
𝑘=0

𝛽𝑘F𝑘 d𝑤𝑡+𝑘

d ln ℓ𝑡 =

𝑡−2∑
𝑠=0

∞∑
𝑘=0

𝛽𝑘+1

𝜌
(F𝑠+𝑘 −F𝑠+𝑘+2) d𝑤𝑡−𝑠+𝑘 .

Plugging expression (OA.16) into these equations gives the first two equations.

In the baseline economy, the path of exogenous state variables are given by {Θ𝑡}∞𝑡=0 and Θ̄. In the
counterfactual economy, we consider changes in exogenous state variables. We denote the new path by
{Θ′

𝑡}∞𝑡=0. We assume that agents learn about these changes at period 𝑡 = 1. This proposition corresponds to
Proposition 3 of CDP, but allowing for worker heterogeneity. It shows how to solve for the counterfactual
changes in endogenous variables in time differences and relative to a baseline economy without the need
to estimate the level of the exogenous state variables. We denote by 𝑦𝑡+1 ≡ 𝑦̇′𝑡+1/𝑦̇𝑡+1 the ratio of time
differences between the counterfactual equilibrium and the baseline equilibrium.

Proposition OA.5 (Solving for Counterfactuals). Suppose that the economy is initially starting from a
stationary equilibrium at period 𝑡 = 0. Up to the first-order approximation around a stationary equilibrium,
given a baseline equilibrium, {𝐿𝑡 , 𝜋𝑡 , 𝑋𝑡}∞𝑡=0, and a counterfactual sequence of changes in exogenous
state variables, {Θ̂𝑡}∞𝑡=1 satisfying lim𝑡→∞ Θ̂𝑡 = 1, known to agents in period 𝑡 = 1, the solution to the
counterfactual sequential equilibrium in time differences does not require information on the level of the
exogenous state variables {Θ𝑡}∞𝑡=0 or Θ̄, and solves the following system of equations:

𝑣
′𝑛 𝑗
𝑡 = 𝑣

𝑛 𝑗
𝑡 +

∑
𝑘

𝛽𝑘F𝑘 ln

(
𝑤̂𝑛𝑡+𝑘

𝑃𝑛𝑡+𝑘

·
𝑤̂𝑛𝑡+𝑘−1

𝑃𝑛𝑡+𝑘−1
· · · · ·

𝑤̂𝑛1

𝑃𝑛1

)
,

𝐿
′𝑛 𝑗
𝑡 = 𝐿

𝑛 𝑗
𝑡 · exp

( 𝑡−2∑
𝑠=0

∞∑
𝑘=0

𝛽𝑘+1

𝜌
(F𝑛

𝑠+𝑘 −F𝑛
𝑠+𝑘+2) ln

(
𝑤̂𝑛𝑡−𝑠+𝑘

𝑃𝑛𝑡−𝑠+𝑘
·
𝑤̂𝑛𝑡−𝑠+𝑘−1

𝑃𝑛𝑡−𝑠+𝑘−1
· · · · ·

𝑤̂𝑛1

𝑃𝑛1

))
𝑗

,
𝑥
𝑛 𝑗

𝑡+1 = (𝐿̂𝑛 𝑗𝑡+1)
𝛾𝑛 𝑗 𝜉𝑛

(𝑤̂𝑛 𝑗𝑡+1)
𝛾𝑛 𝑗
∏
𝑘

(𝑃𝑛𝑘𝑡+1)
𝛾𝑛 𝑗,𝑛𝑘

,
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𝑃
𝑛 𝑗

𝑡+1 =

(∑
𝑖

𝜋
′𝑛 𝑗,𝑖 𝑗
𝑡 𝜋̇

𝑛 𝑗,𝑖 𝑗

𝑡+1 (𝑥𝑖 𝑗𝑡+1𝜅
𝑛 𝑗,𝑖 𝑗

𝑡+1 )−𝜃
𝑗

(𝐴𝑖 𝑗𝑡+1)
𝜃 𝑗𝛾𝑖 𝑗

)−1/𝜃 𝑗

,

𝜋
′𝑛 𝑗,𝑖 𝑗
𝑡+1 = 𝜋

′𝑛 𝑗,𝑖 𝑗
𝑡 𝜋̇

′𝑛 𝑗,𝑖 𝑗
𝑡+1

(
𝑥
𝑖 𝑗

𝑡+1𝜅
𝑛 𝑗,𝑖 𝑗

𝑡+1

𝑃
𝑛 𝑗

𝑡+1

)−𝜃 𝑗

(𝐴𝑖 𝑗𝑡+1)
𝜃 𝑗𝛾𝑖 𝑗 ,

𝑋
′𝑛 𝑗
𝑡+1 =

∑
𝑘

𝛾𝑛𝑘,𝑛 𝑗
∑
𝑖

𝜋
′𝑖𝑘,𝑛𝑘
𝑡+1 𝑋 ′𝑖𝑘

𝑡+1 + 𝛼 𝑗

(∑
𝑘

𝑤̂𝑛𝑘𝑡+1 𝐿̂
𝑛𝑘
𝑡+1𝑤

′𝑛𝑘
𝑡 𝐿′𝑛𝑘𝑡 𝑤̇𝑛𝑘𝑡+1 𝐿̇

𝑛𝑘
𝑡+1 + 𝜄𝑛𝜒′𝑡+1

)
,

𝑤̂
𝑛 𝑗

𝑡+1 𝐿̂
𝑛 𝑗

𝑡+1 =
𝛾𝑛 𝑗(1− 𝜉𝑛)

𝑤′𝑛𝑘
𝑡 𝐿′𝑛𝑘𝑡 𝑤̇𝑛𝑘𝑡+1 𝐿̇

𝑛𝑘
𝑡+1

∑
𝑖

𝜋
′𝑖 𝑗 ,𝑛 𝑗
𝑡+1 𝑋

′𝑖 𝑗
𝑡+1,

where 𝜒′𝑡+1 =
∑
𝑖

∑
𝑘

𝜉 𝑖

1−𝜉 𝑖 𝑤̂
𝑖𝑘
𝑡+1 𝐿̂

𝑖𝑘
𝑡+1𝑤

′𝑖𝑘
𝑡 𝐿′𝑖𝑘𝑡 𝑤̇

𝑖𝑘
𝑡+1 𝐿̇

𝑖𝑘
𝑡+1 and 𝑤̂𝑛𝑡 is a vector whose 𝑗 th element is 𝑤̂𝑛 𝑗𝑡 .

OA.3.2.3 Calibration of the Model

There are 87 regions, 50 US states and 37 other countries, and 4 sectors. The model has the following
parameters: value added shares ({𝛾𝑛 𝑗}𝑛, 𝑗), the share of structures in value added ({𝜉𝑛}𝑛), the input-output
coefficients ({𝛾𝑛𝑘,𝑛 𝑗}𝑛,𝑘, 𝑗), rentier shares ({𝜄𝑛}𝑛), consumption Cobb-Douglas shares ({𝛼 𝑗} 𝑗), the discount
factor (𝛽), the sectoral trade elasticities ({𝜃 𝑗} 𝑗), and the inverse sector-choice elasticity (𝜌).5 The year 2000
corresponds to the period 𝑡 = 0 of the model. To apply dynamic hat algebra, we use data on bilateral trade
flows 𝜋𝑡 and value added {𝑤𝑛 𝑗𝑡 𝐿

𝑛 𝑗
𝑡 + 𝑟

𝑛 𝑗
𝑡 𝐻

𝑛 𝑗}𝑛, 𝑗 from year 2000 to 2007. The data comes from the World
Input-Output Database (WIOD), the 2002 Commodity Flow Survey (CFS), and regional employment data
from the Bureau of Economic Analysis (BEA). See CDP for more details. Finally, we need to identify the
magnitude of the China shock.

Parameters. Following CDP, value added shares ({𝛾𝑛 𝑗}𝑛, 𝑗), the share of structures in value added ({𝜉𝑛}𝑛),
and the input-output coefficients ({𝛾𝑛𝑘,𝑛 𝑗}𝑛,𝑘, 𝑗) are constructed from the BEA and the WIOD data. Rentier
shares ({𝜄𝑛}𝑛), consumption Cobb-Douglas shares ({𝛼 𝑗} 𝑗) are calculated from the constructed trade and
production data. We set the quarterly discount factor to 𝛽 = 0.99. We use the sectoral trade elasticities from
Dix-Carneiro et al. (2023), 𝜃 𝑗 = 4. Finally, we obtain the inverse migration elasticity at a quarterly frequency
from the estimate in Section 4.5. In particular, the value of 𝜌 at a quarterly frequency is calibrated such that
both the yearly and quarterly analysis deliver the same elasticity of labor with respect to the wage changes.
Up to a first-order approximation, the response of labor to a permanent change in wage 𝑤𝑡 = 𝑤 known to
households at 𝑡 = 1 is given by

d ln ℓ𝑡
quarterly =

𝑡−2∑
𝑠=0

∞∑
𝑘=0

(𝛽quarterly)𝑘+1

𝜌quarterly (Fquarterly
𝑠+𝑘 −Fquarterly

𝑠+𝑘+2 ) d𝑤,

d ln ℓ𝑡
yearly =

𝑡−2∑
𝑠=0

∞∑
𝑘=0

(𝛽yearly)𝑘+1

𝜌yearly (Fyearly
𝑠+𝑘 −Fyearly

𝑠+𝑘+2) d𝑤.

5 Without loss of generality, we can ignore {𝜂𝑛 𝑗}𝑛, 𝑗 as they only appear in the constant term of the price index.
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Figure OA.5. Yearly to Quarterly

We calculate the value of 𝜌quarterly that minimizes the difference between
d ln ℓ

yearly
2

d𝑤
and

d ln ℓ
quarterly
2

d𝑤
:

∥∥∥∥∥
∞∑
𝑘=0

(𝛽quarterly)𝑘+1

𝜌quarterly (Fquarterly
𝑘 −Fquarterly

𝑘+2 )−
∞∑
𝑘=0

(𝛽yearly)𝑘+1

𝜌yearly (Fyearly
𝑘 −Fyearly

𝑘+2 )

∥∥∥∥∥
2

.

The resulting value is 𝜌 = 1.0011. Figure OA.5a plots the elements of
d ln ℓ

yearly
2

d𝑤
against the correponding

elements of
d ln ℓ

quarterly
2

d𝑤
. In Figure OA.5b, we also compare the (normalized) sectoral value changes at the

yearly and quarterly frequency:

(1− 𝛽quarterly) d𝑣0 = (1− 𝛽quarterly)
∞∑
𝑘=0

(𝛽quarterly)𝑘Fquarterly
𝑘 d𝑤

(1− 𝛽yearly) d𝑣0 = (1− 𝛽yearly)

∞∑
𝑘=0

(𝛽yearly)𝑘Fyearly
𝑘 d𝑤.

China Shock. Following CDP, we first compute the predicted increases in US imports from China between
2000 and 2007 using the increases in imports from China of other eight advanced economies during the same
period as an instrument. Given this plausibly China-driven increase in imports, we calibrate the increase
in China’s manufacturing TFP, 𝐴China,manufacturing

𝑡 , from 2000 to 2007 such that the increase in imports from
China driven by this increase in China’s TFP exactly matches the predicted imports increase.
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OA.4 Omitted Proofs

Proof of Proposition OA.1. We can write the absolute changes in the value as

| d𝑣𝑠1| = 𝛽𝜏−1(F𝜏−1)𝑠,𝑠∆ ≥ 𝛽𝜏−1
(
(F1)𝜏−1

)
𝑠,𝑠

∆ =
∣∣∣ d𝑣𝑠1∣∣canonical

∣∣∣.
Proof of Proposition OA.2. For 𝑡 ≥ 2,

d ln ℓ𝑡 =
∑

𝑠≥0,𝑘≥0

𝛽𝑘+1

𝜌
(F𝑠+𝑘 −F𝑠+𝑘+2)E𝑡−𝑠−1 d𝑤𝑡−𝑠+𝑘

=

𝑡−2∑
𝑠=0

∑
𝑘≥0

𝛽𝑘+1

𝜌
(F𝑠+𝑘 −F𝑠+𝑘+2) d𝑤𝑡−𝑠+𝑘

= 𝛽

𝜌
(F𝑡−2 −F𝑡) d𝑤2 +

(
𝛽

𝜌
(F𝑡−3 −F𝑡−1) + 𝛽2

𝜌
(F𝑡−1 −F𝑡+1)

)
d𝑤3

+
(
𝛽

𝜌
(F𝑡−4 −F𝑡−2) + 𝛽2

𝜌
(F𝑡−2 −F𝑡) + 𝛽3

𝜌
(F𝑡 −F𝑡+2)

)
d𝑤4 + · · ·

+
(
𝛽

𝜌
(F0 −F2) + · · ·+ 𝛽𝑡−1

𝜌
(F2𝑡−4 −F2𝑡−2)

)
d𝑤𝑡

+
(
𝛽2

𝜌
(F1 −F3) + · · ·+ 𝛽𝑡

𝜌
(F2𝑡−3 −F2𝑡−1)

)
d𝑤𝑡+1 + · · · ≡

∞∑
𝜏=2

A𝜏,𝑡 d𝑤𝜏

where the impulse response functions are given by

A𝜏,𝑡 =


𝑡−2∑
𝑠=0

𝛽𝑠+𝜏−𝑡+1

𝜌
(F2𝑠+𝜏−𝑡 −F2𝑠+𝜏−𝑡+2) if 𝜏 ≥ 𝑡

𝜏−2∑
𝑠=0

𝛽𝑠+1

𝜌
(F2𝑠+𝑡−𝜏 −F2𝑠+𝑡−𝜏+2) if 𝑡 > 𝜏.

Thus, the 𝑠-th diagonal element of A𝜏,𝑡 is a weighted sum of {𝑏2𝑠+|𝑡−𝜏|}𝑠=0,...,𝑡∧𝜏−2 where more weights
are given to those with small 𝑠. Thus, under Assumption 3, the 𝑠-th diagonal element of A𝜏,𝑡 is higher in the
canonical model when |𝑡 − 𝜏| and/or 𝑡 ∧ 𝜏 are small. In particular, for given 𝑡 ∧ 𝜏, we can find 𝐵 ∈ N such
that the 𝑠-th diagonal element of A𝜏,𝑡 is higher in the canonical model when |𝑡 − 𝜏| ≤ 𝐵. We can show that
𝐵 ≥ 1:

(A𝑡 ,𝑡)𝑠𝑠 =
𝑡−2∑
𝑠=0

𝛽𝑠+1

𝜌
𝑏2𝑠

= 𝛽

𝜌
− 𝛽(1−𝛽)

𝜌
(F2)𝑠𝑠 − 𝛽2(1−𝛽)

𝜌
(F4)𝑠𝑠 − · · · − 𝛽𝑡−2(1−𝛽)

𝜌
(F2𝑡−4)𝑠𝑠 − 𝛽𝑚

𝜌
(F2𝑡−2)𝑠𝑠,

(A𝑡 ,𝑡+1)𝑠𝑠 =
𝑡−2∑
𝑠=0

𝛽𝑠+2

𝜌
𝑏2𝑠+1

= 𝛽2

𝜌
(F1)𝑠𝑠 − 𝛽2(1−𝛽)

𝜌
(F3)𝑠𝑠 − 𝛽3(1−𝛽)

𝜌
(F5)𝑠𝑠 − · · · − 𝛽𝑡−1(1−𝛽)

𝜌
(F2𝑡−3)𝑠𝑠 − 𝛽𝑡

𝜌
(F2𝑡−1)𝑠𝑠,
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and

(A𝑡+1,𝑡)𝑠𝑠 =
𝑡−2∑
𝑠=0

𝛽𝑠+1

𝜌
𝑏2𝑠+1

= 𝛽

𝜌
(F1)𝑠𝑠 − 𝛽(1−𝛽)

𝜌
(F3)𝑠𝑠 − 𝛽2(1−𝛽)

𝜌
(F5)𝑠𝑠 − · · · − 𝛽𝑡−2(1−𝛽)

𝜌
(F2𝑡−3)𝑠𝑠 − 𝛽𝑚

𝜌
(F2𝑡−1)𝑠𝑠 .

Thus, by Lemma 2, we can see that (A𝜏,𝑡)𝑠𝑠 is higher in the canonical model if |𝑡 − 𝜏| ≤ 1. This proves that
𝐵 maps N into itself.

Proof of Lemma OA.1.

𝐹 𝑘+1𝜔 =

(
1− 𝛼𝜔 𝑓

𝑘 𝛼𝜔 𝑓
𝑘

𝛽𝜔 𝑓
𝑘 1− 𝛽𝜔 𝑓

𝑘

)(
𝛼̄𝜔 𝛼𝜔
𝛽𝜔 𝛽𝜔

)
=

(
𝛼̄𝜔 − 𝛼𝜔𝛼̄𝜔 𝑓

𝑘 + 𝛼𝜔𝛽𝜔 𝑓
𝑘 𝛼𝜔(1− 𝛼𝜔 𝑓

𝑘 + 𝛽𝜔 𝑓
𝑘)

𝛽𝜔(𝛼̄𝜔 𝑓
𝑘 + 1− 𝛽𝜔 𝑓

𝑘) 𝛼𝜔𝛽𝜔 𝑓
𝑘 + 𝛽𝜔 − 𝛽𝜔𝛽𝜔 𝑓

𝑘

)
=

(
1− 𝛼𝜔 𝑓

𝑘+1 𝛼𝜔 𝑓
𝑘+1

𝛽𝜔 𝑓
𝑘+1 1− 𝛽𝜔 𝑓

𝑘+1

)
.

Thus, we have 𝑓 𝑘+1(𝑥) = (𝑥 − 1) · 𝑓 𝑘(𝑥) + 1. Define 𝑔𝑘(𝑥) = 𝑥 · 𝑓 𝑘(2− 𝑥)− 1, then we have

𝑔𝑘+1(𝑥) = 𝑥 · 𝑓 𝑘+1(2− 𝑥)− 1

= 𝑥 ·
(
(1− 𝑥) · 𝑓 𝑘(2− 𝑥) + 1

)
− 1

= (1− 𝑥)𝑔𝑘(𝑥)

and 𝑔1(𝑥) = −(1− 𝑥). Thus, 𝑔𝑘(𝑥) = −(1− 𝑥)𝑘 and hence 𝑓 𝑘(𝑥) = 1+𝑔𝑘(2−𝑥)
2−𝑥 = 1−(𝑥−1)𝑘

2−𝑥 .
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OA.5 Additional Figures
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Figure OA.6. Backward and Forward Transition Matrices: NLSY (Top Row) and CPS (Bottom Row)

Notes: Assuming that the economy was in a steady state between years 1980 and 2000, the backward and forward
transition matrices are computed by pooling all observations of the NLSY79 data over this period. In the left panel in
the top row, we plot the elements of the aggregate forward transition matrix against those of the aggregate backward
transition matrix. With four sectors, the backward and forward transition matrices are four-by-four matrices with sixteen
elements. In the right panel, we consider four dimensions of observed heterogeneity—sex, race, education, and age,
leading to sixteen groups—and compare the matrices for all sixteen groups. For CPS, we plot the aggregate backward
and forward transition matrices in the bottom row. These matrices are close to the identity matrix, so we separately
plot diagonal elements (left panel) and off-diagonal elements (right panel).
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Figure OA.7. Actual Staying Probabilities for Different Worker Groups
Notes: For each unique combination of (male, female), (Hispanic/Black, non-Hispanic/Black), and (low-skilled, high-
skilled), this figure plots the steady-state 𝑘-year manufacturing staying probabilities, Pr(𝑠𝑡+𝑘 = manufacturing|𝑠𝑡 =
manufacturing). Data source: NLSY79.
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Figure OA.8. Fit of Recursive Representation
Notes: Plugging randomly generated values of {d𝑤𝑡} (from standard normal distribution) and worker flow matrices
computed from the NLSY data (extrapolated using the structural model) into equation (15), we can generate a sequence
of changes in sectoral employment {d ln ℓ𝑡}. Using the computed values of {Γ𝑘}𝑘=1,...6 and {Λ𝑘}𝑘=1,...5 and equation
(17) instead, we can also compute an approximated sequence of changes in sectoral employment. These figures compare
the actual sequence with the approximated sequence.
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Figure OA.9. Changes in Sectoral Real Wages
Notes: This figure plots changes in sectoral real wages over time following an unexpected permanent drop in
manufacturing prices. Solid lines correspond to the prediction from the sufficient statistics in the data, and dashed lines
correspond to the prediction of the canonical model, without persistent worker heterogeneity.
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Figure OA.10. Changes in Sectoral Values: Exogenous and Endogenous Wage Changes

Notes: This figure plots changes in sectoral values in terms of consumption-equivalent variation for workers initially
employed in different sectors. The last four bars correspond to the prediction from sufficient statistics in the data. The
first four bars correspond to the prediction of the canonical model. The remaining bars in the middle correspond to the
prediction made by combining the wage changes of the canonical model and the sufficient statistics.
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Figure OA.11. Counterfactual Changes in Employment Share and Welfare: Type-specific Changes

Notes: This figure plots the transitional dynamics following an unexpected permanent drop in manufacturing prices for
each type of worker. The orange line corresponds to type-1 workers (frequent movers), and the yellow line corresponds
to type-2 workers (infrequent movers).

25



0 10 20 30 40 50
Year

0.05

0.1

0.15

0.2

0.25

C
on

s.
 E

qu
iv

al
en

t V
ar

ia
tio

n 
(%

)

0 10 20 30 40 50
Year

-2.5

-2

-1.5

-1

-0.5

0

0.5

E
m

pl
oy

m
en

t S
ha

re
 C

ha
ng

e 
(%

)

Agric/Const: Hetero.
Agric/Const: Homo.
Manuf: Hetero.
Manuf: Homo.
Commu/Trade: Hetero.
Commu/Trade: Homo.
Services/Others: Hetero.
Services/Others: Homo.

0 10 20 30 40 50
Year

0.5

1

1.5

2

2.5

C
on

s.
 E

qu
iv

al
en

t V
ar

ia
tio

n 
(%

)

0 10 20 30 40 50
Year

-25

-20

-15

-10

-5

0

5
E

m
pl

oy
m

en
t S

ha
re

 C
ha

ng
e 

(%
)

Agric/Const: Hetero.
Agric/Const: Homo.
Manuf: Hetero.
Manuf: Homo.
Commu/Trade: Hetero.
Commu/Trade: Homo.
Services/Others: Hetero.
Services/Others: Homo.

0 10 20 30 40 50
Year

2

3

4

5

6

7

8

C
on

s.
 E

qu
iv

al
en

t V
ar

ia
tio

n 
(%

)

0 10 20 30 40 50
Year

-100

-80

-60

-40

-20

0

20

E
m

pl
oy

m
en

t S
ha

re
 C

ha
ng

e 
(%

)

Agric/Const: Hetero.
Agric/Const: Homo.
Manuf: Hetero.
Manuf: Homo.
Commu/Trade: Hetero.
Commu/Trade: Homo.
Services/Others: Hetero.
Services/Others: Homo.

Figure OA.12. Quality of the First-Order Approximation

Notes: This figure compares the transitional dynamics of welfare (left column) and employment share (right column)
obtained using sufficient statistics formula with those calculated from the exact solution of the estimated structural
model. The top row corresponds to 1% drop in manufacturing prices, the middle row to 10%, and the bottom row to
30%.
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Figure OA.13. Counterfactual Exercises with Different Values of 𝜌

Notes: This figure reports the sectoral welfare change (left column) and the transitional dynamics of sectoral employment
share (right column), computed with different values of 𝜌. The top row corresponds to 𝜌 = 0.5, and the bottom row to
𝜌 = 2.
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Figure OA.14. Aggregate Worker Flow Matrix Series: Monthly CPS

Notes: This figure clearly shows that the initial three circles are not in line with the remaining four circles. In particular,
the last four circles should be shifted upwards. This is a well-known problem of the CPS dataset.
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Figure OA.15. Comparison: CPS and NLSY

Notes: In the left panel, the red lines depict the actual manufacturing staying probabilities from the NLSY79 data
alongside those predicted by the canonical model. Using CPS data, we compute state-level worker flow matrices
extrapolated by the two-type worker model and the canonical model. Aggregating these two series, the blue lines
represent aggregate manufacturing staying probabilities implied by the models with and without worker heterogeneity.
In the right panel, we calculate the ratio of these manufacturing staying probabilities, illustrating the degree to which
the canonical model underestimates these probabilities.
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Figure OA.16. Fit of the Models with and without Heterogeneity: State-Level Worker Flow Matrices

Notes: In this figure, we plot the model-implied state-level worker flow matrix series for 𝑘 = 2, 3 against that in the
data. Blue circles represent the results of the heterogeneous-worker model and orange circles represent those of the
canonical model, which exactly matches the 1-month worker flow matrix. Due to the short time horizon, worker flow
matrices have diagonal elements close to one and off-diagonal elements close to zero. We separately plot them in the
left and right panels.
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Figure OA.17. Changes in Sectoral Real Wages

Notes: This figure plots changes in sectoral real wages over time following the China shock.

M
an

uf
.

W
&R

Con
str

.
Serv

ice
M

an
uf

.
W

&R
Con

str
.

Serv
ice

M
an

uf
.

W
&R

Con
str

.
Serv

ice

0

0.05

0.1

0.15

C
on

su
m

pt
io

n 
E

qu
iv

. V
ar

ia
tio

n 
(%

)

without Heterogeneity
Het. with Homo. Wage
with Heterogeneity

Figure OA.18. Changes in Sectoral Values: Exogenous and Endogenous Wage Changes

Notes: This figure plots changes in sectoral values in terms of consumption-equivalent variation for workers initially
employed in different sectors. The last four bars correspond to the prediction from sufficient statistics in the data. The
first four bars correspond to the prediction of the canonical model. The remaining bars in the middle correspond to the
prediction made by combining the wage changes of the canonical model and the sufficient statistics.
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