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Abstract

In this paper, we develop a sufficient statistics approach to evaluate the impact of
sectoral shocks on labor market dynamics and welfare. Within a broad class of dynamic
discrete choice models that allows for arbitrary persistent heterogeneity across workers,
we show that knowledge of steady-state intersectoral worker flows over various time
horizons is sufficient to evaluate labor supply responses to shocks as well as their aggregate
welfare consequences. We also establish analytically that assuming away persistent worker
heterogeneity—a common practice in the literature—necessarily leads to overestimation of
steady-state worker flows, resulting in systematic biases in counterfactual predictions. As
an illustration of our sufficient statistics approach, we revisit the consequences of the rise
of import competition from China. Using US panel data to measure steady-state worker
flows, we conclude that labor reallocation away from manufacturing is significantly slower,
and the negative welfare effects on manufacturing workers are much more severe than those
predicted by earlier models without persistent worker heterogeneity.
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1. Introduction

Labor markets in the United States, as well as in many other countries, have been subject to
a variety of shocks, from globalization to the rise of automation, oil price shocks, and the
Covid-19 pandemic. Although these shocks differ in many ways, they all have one thing in
common: their effects tend to be highly asymmetric across sectors, potentially creating both
winners and losers among workers. How much do winners gain and losers lose? Can workers
exposed to a negative shock in one sector avoid, or at least mitigate, its adverse consequences
by moving to another sector? And if so, what determines the extent of this reallocation and the
time it takes?

The goal of this paper is to shed light on these questions. The premise of our analysis is
that both workers’ exposure to shocks and their subsequent sectoral mobility depend on their
comparative advantage across sectors. If comparative advantage is weak or highly transient,
we expect frequent sector changes of workers, resulting in small welfare losses or even gains
for negatively exposed workers. If, instead, comparative advantage is strong and persistent, we
expect many workers to remain stuck in the negatively affected sector for a long time, leading
to more severe negative welfare consequences. Intuitively, whether comparative advantage is
weak or strong can be revealed by workers’ propensity to switch sectors prior to shocks—i.e.,
steady-state gross worker flows. If so, one might be able to use such information as sufficient
statistics to evaluate the impact of sectoral shocks on labor market dynamics and welfare. In
this paper, we formalize this general intuition and demonstrate its importance both theoretically
and empirically.

We focus on a broad class of dynamic discrete choice models that allows for arbitrary
time-invariant heterogeneity across workers. At each point in time, workers decide in which
sector to work. They are subject to sector-switching costs and idiosyncratic shocks that are
independently drawn each period from an extreme value distribution, as in the canonical
dynamic discrete choice framework (e.g., Artuç, Chaudhuri, and McLaren, 2010). However,
workers may have time-invariant differences in sector-specific productivity (or, more generally,
in the utility they derive from being in a particular sector) and in sector-switching costs. We
impose no restriction on these differences, in line with the general Roy model (e.g., Heckman
and Honore, 1990). Within this general environment, we establish two theoretical results.

First, we develop a novel sufficient statistics approach that yields valid counterfactual
predictions without estimating the sources or extent of worker heterogeneity. Aside from the
discount factor and a parameter that governs the dispersion of the idiosyncratic shocks, this
approach requires only one input: steady-state gross intersectoral worker flows over different
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Figure 1. 1-Year and 2-Year Worker Flows in the Data

Notes: Arrows between years t and t+1 represent steady-state 1-year worker flows between manufacturing
and non-manufacturing sectors. They represent Pr(st+1 = manuf.|st = manuf.) = 1 − Pr(st+1 =
nonmf.|st = manuf.) = 0.81 and Pr(st+1 = nonmf.|st = nonmf.) = 1 − Pr(st+1 = manuf.|st =
nonmf.) = 0.96. Arrows between years t+1 and t+2 provide additional information needed to compute
the 2-year staying probability for the manufacturing sector. They represent Pr(st+2 = manuf.|st+1 =
st = manuf.) = 0.86 and Pr(st+2 = manuf.|st+1 = nonmf., st = manuf.) = 0.20. Assuming that the
economy was in a steady state between years 1980 and 2000, these worker flows are computed by
pooling all observations of the NLSY79 data over this period.

time horizons.1 We show that this information is sufficient to construct sectoral welfare changes
and dynamic labor reallocation in response to sectoral shocks, up to a first-order approximation.
Steady-state worker flows summarize the effect of heterogeneity of workers on their mobility,
and this is precisely what we need in order to predict the dynamic effect of sectoral shocks.
We start by focusing on the labor supply side, examining the effect of exogenous changes in
sectoral wages. However, we also demonstrate that when we augment the model with the labor
demand side and endogenize wage changes, the same set of sufficient statistics, combined with
knowledge of the labor demand side, can be used to perform counterfactual exercises.

Second, we show analytically how persistent worker heterogeneity shapes the consequences
of sectoral shocks. We begin by characterizing the systematic bias in steady-state worker
flows implied by the canonical dynamic discrete choice model without persistent worker
heterogeneity (hereafter, the canonical model). Ignoring heterogeneity and the resulting self-
selection would lead to underestimation of the long-run probabilities of workers remaining in
the same sector. Intuitively, workers who have self-selected into a sector are more likely to
choose the same sector in subsequent periods. More importantly, this bias, combined with
the sufficient statistics result, implies systematic biases in the counterfactual predictions of
the canonical model. In particular, the canonical model always underestimates the welfare
losses of adversely affected workers and overestimates the speed of labor reallocation for given
exogenous changes in sectoral wages. Moreover, we show that when wages are endogenously

1 Formally, we need probabilities that workers switch from sectors i to j after n periods, for all sectors i and j
and all values of n.
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determined, underestimation of welfare losses is likely to be compounded by overestimation of
labor reallocation. These findings suggest the importance of incorporating persistent worker
heterogeneity in evaluating the consequences of sectoral shocks, which is quantified in the
remainder of the paper.

The next part of our paper provides empirical estimates of our sufficient statistics for
the United States. We first use the panel information in the National Longitudinal Survey
of Youth 1979 (NLSY79) dataset to compute worker flows over various time horizons.2 In
line with our theoretical finding, we find that the steady-state worker flows observed in the
data are inconsistent with those predicted by the canonical model without persistent worker
heterogeneity. For example, the canonical model underestimates the probabilities of workers
choosing the same sector after ten years by more than a factor of two. Simply controlling for
workers’ demographic and socioeconomic characteristics—such as gender, education, race,
and age—explains little of this underestimation. This suggests that the persistent heterogeneity
that drives this underestimation is mostly within these characteristics and unobserved to the
econometrician.3

To illustrate the inconsistency, we plot the 1-year and 2-year worker flows observed in the
NLSY data in Figure 1. A detailed description of the data and calculations will be provided in
Section 4, along with additional analysis. The figure shows, for example, that 81% of typical
manufacturing workers remain in manufacturing after 1 year. The canonical model, which
assumes away persistent heterogeneity, necessarily implies that workers who choose to stay in
the manufacturing sector between years t and t+ 1 are as likely to stay in the following year as
the typical manufacturing worker. However, the data reveal that these workers exhibit a higher
probability of staying again in the following year (86% > 81%).4 Similarly, workers who have
self-selected into manufacturing in year t are more likely to choose it again in year t+ 2 even
when they choose non-manufacturing sectors in year t + 1 (20% > 4%). As a result of these
discrepancies, the canonical model underestimates the probability of workers choosing the
manufacturing sector again after 2 years.5

2 Given data constraints, we only compute worker flows over horizons of less than or equal to 18 years. In
Section 4, we discuss various ways of extrapolating longer-run worker flows from the available data.

3 In addition, we provide suggestive evidence pointing to the importance of time-invariant worker heterogeneity,
rather than duration-dependence mechanisms, in generating this underestimation. Specifically, we show that the
underestimation is substantially reduced when the effect of worker heterogeneity is controlled for by their past
sector choice history, while maintaining the contribution of duration dependence.

4 The data show considerable variation in the frequency of sector switching among workers. Some workers
exhibit a high degree of sector mobility and transition frequently between different sectors. On the other hand,
other workers remain employed in a particular sector for most of their careers and rarely change sectors. This fact
alone is difficult to reconcile with the canonical model.

5 These two gaps contribute almost equally to this underestimation. The canonical model implies that the 2-year
staying probability is 81%× 81%+ 19%× 4% = 66%, while the actual probability is 81%× 5%+ 19%× 16% =
4%+ 3% higher than this value.
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We then turn to estimation of the dispersion of the idiosyncratic shock. This estimation is
based on the observation that the response of sectoral employment to wage shocks depends
solely on the dispersion parameter and the sufficient statistics, independent of the specific
details of worker heterogeneity. Thus, this parameter can be estimated by measuring the
response of sectoral employment, conditional on our sufficient statistics. We put this idea
into practice by extending the standard Euler equation approach in the literature to allow for
arbitrary worker heterogeneity.

In the final part of our paper, we combine the previous empirical estimates with the sufficient
statistics result to revisit two applications in the literature. First, we apply our findings to a
hypothetical trade liberalization exercise of Artuç, Chaudhuri, and McLaren (2010), in which
the economy experiences an unexpected permanent drop in manufacturing prices. This stylized
exercise clearly illustrates how the failure to match worker flows across sectors at different
horizons can lead to biases in counterfactual predictions. Second, as a more realistic application,
we revisit an extensively studied topic: the impact of the rise in China’s import competition
on US labor markets. Following Caliendo, Dvorkin, and Parro (2019), we introduce a richer
labor demand side that features international and intranational trade, input-output linkages, and
multiple production inputs.6 The results demonstrate that labor reallocation following the China
shock is significantly smaller, by up to 50%, and the negative welfare effects on manufacturing
workers are more severe than those predicted by the canonical model. In the absence of
persistent worker heterogeneity, workers initially employed in the manufacturing sector in all
states appear to benefit, on average, from the China shock because the model predicts that they
can easily move to positively affected sectors. However, this is no longer the case when we do
account for persistent worker heterogeneity. The welfare gains of manufacturing workers are
close to zero even when they are positive, and manufacturing workers in five states experience
welfare losses.

Related Literature. This paper is related to several strands of the literature. A large body of
empirical literature studies the labor market impact of shocks that exhibit asymmetric effects
across sectors, such as globalization (Goldberg and Pavcnik, 2007); automation (Acemoglu
and Restrepo, 2020); the Covid-19 pandemic (Chetty et al., 2020); and oil price shocks (Keane
and Prasad, 1996). Of particular relevance to our application is the literature that examines the
impact of the rise in China import competition on US labor markets (e.g., Autor, Dorn, and
Hanson, 2013; Autor et al., 2014; Acemoglu et al., 2016; Pierce and Schott, 2016). In this paper,
we characterize welfare changes and labor reallocation in response to such sectoral shocks,
taking into account the full general-equilibrium effect in a dynamic environment.

6 In contrast to their paper, we make the simplifying assumption that workers can switch sectors only within
each state, and thus abstract from interstate migration.
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On the more structural side, recent papers have emphasized the importance of transitional
dynamics in studying the effect of sectoral shocks and built models based on the dynamic discrete
choice framework initially introduced in the IO literature (e.g., Rust, 1987). An important
early contribution is Artuç, Chaudhuri, and McLaren (2010), who apply this framework to
analyze the impact of a trade shock on labor market dynamics. Subsequent papers enrich this
framework by incorporating more realistic elements to investigate the effect of the China shock—
including trade and input-output linkages (Caliendo, Dvorkin, and Parro, 2019); involuntary
unemployment due to downward nominal wage rigidities or search frictions (Rodriguez-Clare,
Ulate, and Vasquez, 2022); and endogenous trade imbalances (Dix-Carneiro et al., 2023). We
extend the literature by introducing arbitrary persistent worker heterogeneity to the framework
and show how this heterogeneity significantly affects the results of counterfactual exercises.

In allowing for persistent worker heterogeneity, we relate to a large, mostly static literature
that emphasizes self-selection based on comparative advantage (see Borjas, 1987; Heckman
and Sedlacek, 1985; and Ricardo’s theory of comparative advantage for early contributions
and Lagakos and Waugh, 2013; Burstein, Morales, and Vogel, 2019; Hsieh et al., 2019; Porzio,
Rossi, and Santangelo, 2022; Grigsby, 2022; and Adao, Beraja, and Pandalai-Nayar, 2023
for recent applications and developments). The work most closely related to ours includes
Costinot and Vogel (2010); Adão (2016); Lee (2020), and Galle, Rodríguez-Clare, and Yi
(2023), who also study the distributional effects of trade shocks. We contribute to this literature
by embedding this mechanism within a dynamic discrete choice framework, which allows us
to take transitional dynamics into account and highlight its importance in a dynamic context.

In terms of methodology, we follow the sufficient statistics tradition (e.g., Chetty, 2009;
Hulten, 1978; Arkolakis, Costinot, and Rodríguez-Clare, 2012; Baqaee and Farhi, 2020; McKay
and Wolf, 2022; Beraja, 2023). In the present context, the use of sufficient statistics offers
multiple advantages. First, by eliminating the need to estimate numerous primitives, it reduces
computational costs and identification requirements while ensuring the transparency of the
analysis. Second, our approach allows us to accommodate arbitrary worker heterogeneity
without having to deal directly with the well-known identification challenges associated with
unobserved heterogeneity (see, e.g., Heckman and Honore, 1990; Arellano and Bonhomme,
2017; Bonhomme, Lamadon, and Manresa, 2022).

Finally, our paper is also related to a large structural literature that incorporates rich
heterogeneity—such as age, gender, education, nonpecuniary benefit, tenure, unobserved com-
parative advantage—in dynamic models. Prominent examples include Keane and Wolpin (1997)
and Lee and Wolpin (2006) in the labor literature and Dix-Carneiro (2014) and Traiberman
(2019) in the trade literature. Our contribution to this body of literature is twofold. First, our
results may serve to guide future structural analysis by suggesting that one can include worker
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flows over different time horizons as targeted moments in estimations to properly capture labor
market dynamics. Second, our sufficient statistics provide a transparent way to assess which
types of heterogeneity in the literature matter more for counterfactual predictions of the model.

Outline. The remainder of the paper is organized as follows. Section 2 presents a model of labor
market dynamics with arbitrary persistent worker heterogeneity and derives our main sufficient
statistics results. Section 3 analytically shows how ignoring persistent worker heterogeneity
systematically affects the sufficient statistics and in turn biases counterfactual predictions
regarding welfare and labor market dynamics. Section 4 measures our sufficient statistics
using US panel data and estimates the bias in sufficient statistics due to ignoring persistent
heterogeneity. Section 5 applies our sufficient statistics approach to study the impact of a
hypothetical trade liberalization and the China shock, and Section 6 concludes. The Appendix
contains proofs omitted in the main text.

2. Dynamic Discrete Choice Model with Persistent Worker
Heterogeneity

In this section, we present a model that extends the dynamic discrete choice model of Artuç,
Chaudhuri, and McLaren (2010) (hereafter, ACM) by allowing arbitrary time-invariant worker
heterogeneity. We focus on workers’ dynamic choice over sectors, though the same framework
can be applied to analyze their geographic location or occupation choices by a simple relabel-
ing.7 We first describe the individual worker’s dynamic discrete choice problem. The solution
to this problem characterizes the dynamics of welfare and sectoral labor supply at individual
level. We then show how we can aggregate the dynamics to macro level to derive equations that
can be used to compute counterfactual changes in aggregate welfare and sectoral labor supply
in response to sectoral shocks. We conclude by demonstrating how to combine this result with
the labor demand side of the model to study the general equilibrium effects of sectoral shocks.

2.1 Workers’ Dynamic Discrete Choice Problem

Time is discrete and indexed by t. There are S sectors indexed by i, j ∈ S = {1, . . . , S}. There
is a continuum of infinitely lived heterogeneous workers. We allow for arbitrary persistent

7 Dynamic location or occupation choices have also been widely studied in the literature: location choices
(Kennan and Walker, 2011; Amior and Manning, 2018; Allen and Donaldson, 2020; Bilal and Rossi-Hansberg,
2021; Howard and Shao, 2023; Kleinman, Liu, and Redding, 2023) and occupation choices (Lee, 2005; Artuç and
McLaren, 2015; Traiberman, 2019), just to name a few.
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heterogeneity of workers by assigning each worker a type ω ∈ Ω, which is drawn from an
unknown distribution W over Ω. Importantly, the type ω may capture not only observable
demographic and socioeconomic characteristics, such as gender and education, but also
unobserved differences in productivity and nonpecuniary preferences across sectors. At each
point in time, workers decide in which sector to work.8 A worker of type ω who is employed
in sector i at period t chooses in which sector to work in period t+ 1 in order to maximize her
continuation value. The value of this worker in period t can be written as9

V ω
it = wω

it +max
j∈S

{βEtV
ω
jt+1 − Cω

ij + ρω · εjt}, (1)

where the type-specific instantaneous utility, wω
it, can capture both the wage and nonpecuniary

benefits from sector i in period t. For expositional purposes, we will refer to wω
it as sectoral

wages (though in some of our applications, they will be the log of the real wages). The term
Cω

ij ≥ 0 captures the type-specific cost of switching from sector i to j. The idiosyncratic shock
εjt is worker-specific and reflects nonpecuniary motives for workers to switch sectors.10 The
expectation operator, Et, is taken over realizations of future wages and future idiosyncratic
shocks, conditional on the information available in period t. The parameter ρω governs the
relative importance of idiosyncratic shocks in sector choice decisions and hence determines
the elasticity of sectoral employment with respect to sectoral wages. We allow the sectoral
wages and switching costs to vary arbitrarily across different types of workers, as can be seen
from the superscripts ω in equation (1).

When |Ω| = 1—which means that there are no persistent differences across workers—
our model reduces to the canonical homogeneous-worker sector choice model of ACM or,
more broadly, to the standard dynamic discrete choice model (e.g., Rust, 1987). In these
models, workers are ex ante homogeneous, and any ex post heterogeneity arising from different
realizations of idiosyncratic shocks persists for only a single period. In the rest of the paper,
we use the term worker heterogeneity exclusively to refer to persistent worker heterogeneity
across different types of workers. When Cω

ij = 0 and ρω = 0, on the other hand, the worker

8 Following the timeline of ACM, workers make their sector choice decision one period in advance. This
means that the sector choice decision for period t is made in period t− 1. Once period t arrives, the instantaneous
utility wit from their chosen sector is realized, and workers enjoy the realized utility. They then observe the
realized value of period t idiosyncratic shocks, {εjt}j , and subsequently make a sector choice decision for period
t+ 1. The expectation operator Et is defined with respect to workers’ information set at the time of their sector
choice decision for period t+ 1.

9 Given the time series of instantaneous utility, {wω
it}i,t,ω, there are no interactions between workers of different

types, so each type of worker solves problem (1) independently.
10 Idiosyncratic shocks result in gross flows that are an order of magnitude larger than net flows, a pattern that

is consistent with the observed data.
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problem boils down to choosing the sector that offers the highest wage, so this model reduces
to the general Roy model of self-selection (e.g., Heckman and Honore, 1990).

As is standard in dynamic discrete choice models in trade, IO, and labor (e.g., Rust, 1987;
Aguirregabiria and Mira, 2010), we assume that the idiosyncratic shocks, εjt, are drawn from
a type I extreme-value distribution independently across workers, sectors, and time periods.
Let vωit be the expected value derived from choosing sector i in period t for workers of type
ω, taking the average over the realizations of idiosyncratic shocks {εjt}j , and let F ω

ijt denote
the probability that workers of type ω in sector i in period t choose sector j in period t + 1.
Standard extreme-value algebra gives an analytical characterization of the ex ante value and
sector choice probabilities:

vωit ≡ EεV
ω
it = wω

it + ρω ln
∑
j∈S

(
exp(βEtv

ω
jt+1)/ exp(C

ω
ij)
)1/ρ

, (2)

F ω
ijt ≡ Prt(st+1 = j|st = i, ω) =

(
exp(βEtv

ω
jt+1)/ exp(C

ω
ij)
)1/ρω∑

k∈S
(
exp(βEtvωkt+1)/ exp(C

ω
ik)
)1/ρω , (3)

where the expectation operatorEε is taken over the realizations of {εjt}j . Equation (2) expresses
the value of being in sector i as the sum of the current period’s instantaneous utility and a
nonlinear aggregation of next-period values, net of switching costs. Equation (3) suggests
that, all else being equal, workers are more likely to choose sectors with higher values net of
switching costs. Because there is a continuum of workers for each type ω, we can characterize
the law of motion of their sectoral employment share from their sector choice probabilities,

ℓωjt+1 =
∑
i∈S

F ω
ijtℓ

ω
it. (4)

We also define the backward transition probability,

Bω
jit ≡ Prt(st = i|st+1 = j, ω) =

ℓωitF
ω
ijt

ℓωjt+1

,

which is the probability that a type ω worker in sector j in period t + 1 came from sector i
in period t. We define S × S matrices F ω

t and Bω
t , whose (m,n)-element is F ω

mnt and Bω
mnt,

respectively. We refer to them as the (forward) transition matrix and backward transition matrix,
respectively. Note that the rows of these matrices sum to one.
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2.2 Welfare and Labor Dynamics at the Micro Level

The system of equations (2)–(4) fully characterizes the labor supply side of the model. That is,
given the series of sectoral wages, {wω

it}, we can solve for the series of sectoral employment,
{ℓωit}, and sectoral values, {vωit}, from this system of equations. These are the two variables
of interest in our counterfactual analysis. As a first step toward deriving a sufficient statistics
result, we consider infinitesimal sectoral shocks {dwω

it} and take first-order approximations of
equations (2) and (4) around a steady state.11

A steady state is associated with time-invariant sectoral wages (wω
it = wω

i for all t), where
the type-specific value, sector choice probabilities, and sectoral labor supply remain constant
over time. In line with our previous notation, we denote the steady-state forward and backward
transition matrices as F ω and Bω, respectively. The following equations summarize the
responses of the endogenous variables in terms of deviations from steady state:

dvωt = dwω
t + βF ωEt dv

ω
t+1, (5)

d ln ℓωt+1 = Bω d ln ℓωt + β
ρω
(I −BωF ω)Et dv

ω
t+1, (6)

where we use the vector notation,

dvωt =
(
dvω1t · · · dvωSt

)T
, dwω

t =
(
dwω

1t · · · dwω
St

)T
, and d ln ℓωt =

(
d ln ℓω1t · · · d ln ℓωSt

)T
.

The algebra follows that of Kleinman, Liu, and Redding (2023), as described in Appendix D.
It is worth highlighting the assumptions underlying these equations. Equation (5) is a direct
application of the envelope theorem, often referred to the Williams-Daly-Zachary theorem in
the discrete choice literature. Thus, it remains valid regardless of the distribution assumption
on the idiosyncratic shock.12 On the other hand, equation (6) is valid only under the assumption
that idiosyncratic shock follows a type I extreme-value distribution. Whereas Taylor’s theorem
implies that it is always possible to express d ln ℓωt+1 as a linear function of d ln ℓωt and Et dv

ω
t+1

up to the first order, the sufficient statistics results we derive below rely on the coefficients of this
linear function’s being polynomials of the transition matrices Bω and F ω, which extreme-value
distribution assumption guarantees.13 A more detailed intuition is provided in Appendix A.4.

11 We come back to the quality of this first order approximation in Section 5. For the shocks that we consider,
the approximation is good.

12 In fact, the same envelope-type result extends to a much wider class of models, including models with
duration dependence mechanism.

13 This assumption is sufficient but not necessary. In Appendix A.4, we demonstrate that this result is not specific
to the extreme-value distribution. Specifically, we show that a version of equation (6) holds for any distribution
of the idiosyncratic shock in a limit case of a perturbed economy, in which dispersion of the idiosyncratic shock
converges to zero. Thus, all results in this paper apply to this limit case.
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It is important to note that equations (5) and (6) cannot be confronted directly with data if
worker type ω is unobservable. The key idea of this paper is that despite this unobservability,
these type-specific equations can be aggregated into equations that solely involve a few
observable statistics, which can be used to construct counterfactuals. This idea allows us to
bypass the well-known challenges associated with explicitly specifying and estimating the
distribution of underlying unobserved heterogeneity (e.g., Heckman and Honore, 1990).

In order to prepare the aggregation at the macro level, we solve these equations forward and
backward to write the responses of sectoral values and sectoral employment as a function of the
expected past and future wage changes (· · · , dwω

t−1, dw
ω
t , dw

ω
t+1, · · · ). Lemma 1 summarizes

the result.

Lemma 1. For a given sequence of changes in sectoral wages {dwω
t }, the changes in type-

specific sectoral values and sectoral employment {dvωt , d ln ℓωt } are given by:

dvωt =
∑
k≥0

(βF ω)kEt dw
ω
t+k, (7)

d ln ℓωt = β
ρω

∑
s≥0

(Bω)s(I −BωF ω)

(∑
k≥0

(βF ω)kEt−s−1 dw
ω
t−s+k

)
. (8)

Workers are forward-looking, so all future shocks affect the value of workers and sectoral
employment, as can be seen from equations (7) and (8). Due to the presence of switching
costs and idiosyncratic shocks, labor reallocation is sluggish, so past shocks also affect sectoral
employment, as can be seen from equation (8).

2.3 Welfare and Labor Dynamics at the Macro Level

We focus on the effect of sectoral shocks on variables aggregated across workers of different
types ω. In particular, we define total sectoral employment and average sectoral value as
follows:

ℓit =

∫
Ω

ℓωit dW (ω) and vit =

∫
Ω

vωit dW (ω|s = i) (9)

where W (·|s = i) is the steady-state type distribution of workers in sector i. The total
employment of sector i is obtained by summing the employment of different types of workers.
Likewise, the average value of workers in sector i is given by taking the weighted average across
different types of workers, using the steady-state type distribution of that sector as weights.14 In
so doing, we implicitly assume a utilitarian social welfare function with equal weights across

14 We therefore abstract from distributional consequences of sectoral shocks across unobservable types ω. Our
interest here is in comparing the welfare of workers initially employed in different sectors.
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all workers. Next, we define worker flow matrices. As we will demonstrate, these matrices are
sufficient statistics for characterizing the welfare and labor market consequences of sectoral
shocks.

Definition 1. For each k ∈ N0, the k-period worker flow matrix Fk is an S × S matrix whose
(i, j)-element is given by the steady-state share of workers in sector i who switch to sector j

after k periods:
(Fk)i,j = Pr(st+k = j|st = i).

Unlike the type-specific transition matrices Bω and F ω in Lemma 1, these worker flow
matrices can be computed directly from longitudinal information on workers’ sector choices,
as we will do using the NLSY data in Section 4.15

To derive an aggregation result, we make the following two assumptions.

Assumption 1. Workers of different types share common sectoral shocks and common disper-
sion of idiosyncratic shocks:

dwω
t = dwt and ρω = ρ, for all t and ω ∈ Ω.

Assumption 2. The bilateral switching costs between sectors satisfy either one of the following
conditions:

Cω
ij = Cω

ji or Cω
ij =

{
Cω

i + C̃ω
j if i ̸= j

0 if i = j
,

for all i, j ∈ S, and ω ∈ Ω.

It is worth emphasizing that the first part of Assumption 1 does not require that all workers
have the same level of instantaneous utilities. For example, suppose workers have log utility and
shocks are multiplicative to the wages of all workers. In this case, even if workers have different
wages, the shocks manifest themselves as common additive shocks to instantaneous utilities for
all workers.16 Similarly, the second part of Assumption 1 does not necessarily imply that all
workers have the same labor supply elasticity. Although the dispersion of idiosyncratic shocks

15 In Appendix A.1, we formally show that if we have access to infinite-length longitudinal information on
workers’ sector choices, we can directly observe the full series of worker flow matrices. However, since panel
data have finite time dimension in practice, we can only calculate worker flow matrices Fk for low enough k’s. In
Section 4, we discuss various ways of extrapolating worker flow matrices.

16 In many applications, however, the shocks of interest are known to have heterogeneous effects across observed
types—for example, between high-skilled and low-skilled workers or across geographic regions. In such cases,
we can account for this possibility by conducting the same analysis separately for each observed type of workers.
This is the approach we take when we study the effect of the China shock on US labor markets in Section 5.
However, this approach is infeasible for unobserved types. Therefore, we cannot dispense with the assumption
that shocks are common across unobserved types.
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governs the elasticity of sectoral labor supply with respect to sectoral shocks, the elasticity
also depends on type-specific transition matrices, Bω and F ω, as can be seen in equation
(8).17 Although restrictive, this assumption is standard in the dynamic discrete choice literature,
even in papers that incorporate rich heterogeneity of workers. Our approach can be applied to
the models studied in those papers.

The conditions in Assumption 2 are often imposed in the literature for various purposes.
For example, ACM (in Section IV.D) and Dix-Carneiro (2014) assume that the switching
costs can be decomposed as in the second condition to reduce the number of parameters
to be estimated. In a different context, Allen and Arkolakis (2014) and Desmet, Nagy, and
Rossi-Hansberg (2018) assume the first condition for bilateral trade costs and bilateral switching
costs, respectively, in order to simplify the equilibrium system into a single integral equation.

We are ready to state our main result.

Proposition 1. Suppose that Assumptions 1 and 2 hold. For a given sequence of (common)
changes in sectoral wages {dwt}, the changes in sectoral value and sectoral employment are
given by:

dvt =
∑
k≥0

βkFkEt dwt+k, (10)

d ln ℓt =
∑

s≥0,k≥0

βk+1

ρ
(Fs+k −Fs+k+2)Et−s−1 dwt−s+k. (11)

The logic behind this proposition is as follows. Starting from Lemma 1, we want to
aggregate type-specific variables to the macro level. We first invoke Assumption 2, which
simplifies the aggregation by giving the equality between the forward and backward transition
matrices, Bω = F ω.18 Although this equality is not strictly necessary for our purpose, it
allows us to derive analytical results in Section 3 and reduces the data requirements needed
to implement our sufficient statistics approach.19 Figure A.1 shows that these two transition
matrices are indeed very similar at the level of granularity at which both matrices can be
computed from the data. After imposing this equality, we aggregate equations (7) and (8) to
derive equations (10) and (11), respectively. In particular, the kth powers of the type-specific
transition matrix (F ω)k are aggregated into the k-period worker flow matrix Fk. Intuitively,

17 What this implies is that all heterogeneity in the elasticity of sectoral labor supply with respect to sectoral
shocks is revealed by shares. This observation will be useful in deriving our sufficient statistics result.

18 See Appendix A.2 for a proof. Two matrices are equal if and only if the steady-state flow of type ω workers
from sector i to j is equal to the flow from sector j to i for all sector pairs. However, the definition of the steady
state does not necessarily imply this condition, since it only requires that the total outflow of type ω workers from
a sector be equal to the total inflow into that sector. We further need Assumption 2 to guarantee that bilateral
worker flows are balanced for all sector pairs.

19 See Appendix A.2 for a general version of Proposition 1 without this assumption.
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since the (i, j)-element of the former is given by Pr(st+k = j|st = i, ω), we can obtain the
(i, j)-element of the latter, Pr(st+k = j|st = i), by taking an average over the type distribution
of workers in sector i, Pr(ω|st = i). In Appendix A.1, we prove Proposition 1 by introducing
the population-average operator, which formalizes the idea of aggregation.20

The role of Lemma 1 and Assumption 1 should also be clear at this point. We have just
seen that products of transition matrices can be aggregated to worker flow matrices, but when
they are multiplied by another type-specific variable, such as dvωt+1 in (5) and dwω

t+k in (7),
a complication arises because the aggregation then involves a covariance term that captures
the extent to which two multiplicands comove across different worker types. Since the type
index ω may include unobserved heterogeneity, it is not possible to characterize the covariance
term without specifying the precise form of worker heterogeneity. Lemma 1 and Assumption 1
allow us to bypass this problem. Relatedly, given the structure in Proposition 1, the aggregate
variables do not possess a recursive representation, hence going from equations (5) and (6) to
(7) and (8) is key to our results. We will return to this issue in Section 4.

Proposition 1 establishes that in order to calculate the counterfactual changes in aggregate
welfare and sectoral employment for a known sequence of exogenous wage changes, {dwt},
we only require knowledge of the worker flow matrices, {Fk}, and the shape parameter ρ.
In particular, we do not need full knowledge of the detailed worker heterogeneity (i.e., the
distribution of types, W ) and resulting self-selection that generates these worker flow matrices.
What matters is how frequently workers switch sectors over time, not the specific structural
determinants of these patterns.21 In Section 4, we estimate worker flow matrices and the value
of the parameter ρ using panel data. The following corollary summarizes the discussion.22

Corollary 1. Consider a sequence of exogenous changes in sectoral wages, {dwt}. Together
with ρ, the worker flow matrices, {Fk}, constitute sufficient statistics for changes in sectoral
values, {dvt}, and sectoral employment, {d ln ℓt}.

20 In static settings, a similar aggregation idea for the first-order welfare effect is advanced in Kim and Vogel
(2020); Sprung-Keyser, Hendren, and Porter (2022), under conditions similar to the first part of Assumption 1.

21 This result is surprising because, in principle, constructing the counterfactual in a dynamic context without a
precisely specified model requires estimating all dynamic elasticities of sectoral values and sectoral employment
with respect to shocks at all time horizons—that is, how past as well as future shocks affect these variables.
McKay and Wolf (2022) propose a method to operationalize this approach in practice, but in general estimating
all elasticities is challenging due to high information requirements and limited availability of data. Proposition 1
reveals that the dynamic discrete choice framework imposes a tight connection among these dynamic elasticities.
This relationship enables us to parameterize these elasticities with a single parameter to be estimated, ρ, while the
worker flow matrices contain all the remaining information needed to calculate the dynamic elasticities.

22 In Arkolakis, Costinot, and Rodríguez-Clare (2012), a distinction is made between the ex ante sufficient
statistics result and the ex post result. Proposition 1 provides the ex post sufficient statistics in the sense that
this result is only useful if we can estimate or directly observe the change in wages resulting from the shock
of interest. This is often feasible when examining the effects of shocks that occurred in the past. However, it
becomes impossible when attempting to forecast the impact of hypothetical shocks.
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We have so far focused on the labor supply side and considered exogenously given wage
changes. In Section 2.4, we show that even when we endogenize the wage by augmenting
the model with the labor demand side, the same set of sufficient statistics, combined with
knowledge of the labor demand side, constitutes sufficient statistics for counterfactual changes
in sectoral values and sectoral employment.

At this point, it is worth discussing how our sufficient statistics approach relates to structural
work in this area. Our approach stands in stark contrast to the standard structural approach
to accounting for worker heterogeneity. First, our approach eliminates the need to estimate
many primitives. This reduces computational costs and data requirements, while ensuring
the transparency of the analysis. Like other studies of sufficient statistics (See, e.g., Chetty,
2009), our method yields counterfactual predictions that are immune to the Lucas critique,
without requiring knowledge of the full structure of the model. Second, this approach
effectively accommodates arbitrary worker heterogeneity without encountering the well-known
challenges associated with estimating the distribution of unobserved heterogeneity from the
data.23 However, these advantages do not come without costs. First, we need to make restrictions
on the set of shocks that can be studied and on the heterogeneity in the dispersion of idiosyncratic
shocks (Assumption 1). Second, we rely on the first-order approximation around a steady state,
the validity of which depends on the sectoral shock of interest. We will revisit this issue in
Section 5.

2.4 Closing the Model: Labor Demand and Equilibrium Wages

We conclude this section by extending the sufficient statistics result to the case in which the
wage is endogenously determined by the labor market equilibrium. For this purpose, we
need to specify the labor demand side of the model. Although the main contribution of this
paper centers on the labor supply side, our heterogeneous worker labor supply model can be
integrated with any labor demand system. The specific nature of the labor demand system
depends on preferences, technology, and good market structure. For expositional purposes, we
specify it in a reduced-form manner in this section and return to its structural determinants in
our applications in Section 5. Specifically, we assume that the wage of sector i is endogenously
determined by the sectoral labor allocation {ℓjt}j and exogenous shocks {εjt}j that affect the
marginal productivity of labor. The variable εjt encompasses sector-specific factors, such
as capital stock, technology shocks, policy variables, and the like. This relationship can be

23 Both Dix-Carneiro (2014) and Traiberman (2019) incorporate unobserved heterogeneity in their analyses.
However, due to the identification challenge, they are constrained to use a limited number of unobserved types.
While this could allow them to capture the absolute advantage of workers, it is difficult to capture the comparative
advantage of workers and hence their self-selection into sectors.
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expressed as wω
it = fω

i ({ℓjt}j, {εjt}j).24 In Appendix A.3, we show that under Assumption 1
we can write this relationship in terms of a first-order approximation as

dwt = D · d ln ℓt + E · dεt, (12)

where there is no ω-index on matrices D and E.
Combining the labor demand curve represented by this equation with the labor supply

curve characterized in the previous proposition, we can define the labor market equilibrium.
It consists of paths of type-specific sectoral value, vωt ; type-specific labor allocation across
sectors, ℓωt+1; type-specific sector choice probabilities, F ω

t ; aggregate sectoral value, vt; and
aggregate labor allocation, ℓt+1, that are measurable with respect to the period-t information
set, and a path of sectoral wages, wt, that are measurable with respect to the period-(t − 1)

information set and the period-t shock such that: (a) type-specific variables {vωt , ℓωt+1, F
ω
t }

solve problem (1) given the path of wages; (b) aggregate variables {vt, ℓt} are consistent with
the type-specific variables through equation (9); (c) wages are determined by the marginal
productivity of labor, (12); and (d) the labor market clears.

The following proposition shows that the same set of worker flow matrices, combined
with knowledge of the labor demand side, still constitutes sufficient statistics when wages are
endogenously determined by the labor market equilibrium.

Proposition 2. Suppose that Assumptions 1 and 2 hold. For a given sequence of labor demand
shocks {dεt}, the equilibrium values of {dvt, d ln ℓt, dwt}t are given by solution of the following
system of equations:

dvt =
∑
k≥0

βkFkEt dwt+k,

d ln ℓt =
∑

s≥0,k≥0

βk+1

ρ
(Fs+k −Fs+k+2)Et−s−1 dwt−s+k,

dwt = D · d ln ℓt + E · dεt.

The intuition is simple. Conditional on a path of wage changes across time and across
sectors, we can characterize the dynamic response of sectoral employment using Proposition 1.
Conditional on the dynamics of sectoral employment, we can solve for prices and wages from
the labor demand side to characterize the path of (real) wage changes. The equilibrium is
determined as a fixed point of these relations.

24 For simplicity, we assume that labor demand, unlike labor supply, is determined in a static manner. However,
the results below could be extended to models with dynamic labor demand decisions, without affecting any of the
main insights.
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Unlike Proposition 2, which requires knowledge of the path of wages, Proposition 1 requires
the path of labor demand shocks {εi}. One can think of it as extending Proposition 2 to the
case where labor demand are not perfectly elastic.

Given the shock path, {dεt}, we can solve the system of equations to compute changes in
values and sectoral employment. Conditional on the observed series of worker flow matrices,
the value of ρ, and the reduced-form specification of the labor demand side, D and E, the
responses of welfare, employment, and wages to labor demand shocks are identical.

3. Employment and Welfare Implications of Persistent Hetero-
geneity

The canonical dynamic discrete choice model commonly used in the trade, labor, and IO
literature abstracts from persistent worker heterogeneity. The sufficient statistics results in the
previous section provide a way to account for arbitrary persistent heterogeneity. In this section,
we use these results to demonstrate why incorporating this consideration matters in evaluating
the consequences of sectoral shocks on welfare and labor reallocation.

Our sufficient statistics result highlights that worker heterogeneity affects the results of
counterfactual exercises only through its effect on the model’s predictions for a particular set
of moments of the data: the worker flow matrices {Fk}.25 In this section, we first theoretically
characterize a systematic bias in worker flow matrices implied by the canonical model, which,
due to the lack of persistent worker heterogeneity, imposes that the k-period worker flow matrix
is equal to the one-period worker flow matrix to the kth power. In turn, the bias in worker
flows leads to systematic biases in counterfactual predictions of welfare changes and labor
reallocation.

3.1 Steady-state Worker Flow with and without Persistent Heterogeneity

Lemma 2 characterizes the restrictions that the absence of persistent worker heterogeneity
imposes on our sufficient statistics; i.e., the worker flow matrices {Fk}.

25 Another implication of the sufficient statistics result is that, conditional on the observed worker flow matrix
series, the results of counterfactual exercises remain unchanged regardless of how we specify the underlying
heterogeneity. However, in practice, not all worker flow matrices of the model match those observed in the
data, and, as will be seen in this section, models with different worker heterogeneity yield different worker flow
matrices.
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Lemma 2. Without persistent worker heterogeneity (|Ω| = 1), we have Fk = (F1)
k. With

(non-degenerate) persistent worker heterogeneity, we have (Fk)ii >
(
(F1)

k
)
ii

for all i ∈ S and
k > 1.

The first part of Lemma 2 shows that without persistent heterogeneity, the Markovian struc-
ture of the model implies that the same transition probabilities are applied to all workers, which
enables us to compute the k-period worker flow matrix by multiplying the one-period matrix
k times.26 The second part of Lemma 2 illustrates how accommodating worker heterogeneity
relaxes this restriction. With worker heterogeneity, the diagonal elements of the k-period
worker flow matrices could be larger than they would be in the absence of worker heterogeneity.
Accordingly, if we wrongly ignore persistent worker heterogeneity, we systematically under-
estimate the probability of workers choosing the same sector after k periods, concluding that
moving across sectors is more frequent than it actually is. To understand this underestimation,
consider the case of k = 2, where we have

(F2)ii =
∑
j∈S

Pr(st+1 = j|st = i) Pr(st+2 = i|st = i, st+1 = j), (13)

(
(F1)

2
)
ii
=
∑
j∈S

Pr(st+1 = j|st = i) Pr(st+2 = i|st+1 = j).

When workers are heterogeneous, the additional conditioning of st = i in equation (13)
increases the likelihood of choosing sector i again in period t + 2, since workers who have
self-selected into sector i in period t are more likely to do so in subsequent periods (see, for
example, Heckman, 1981).

Many widely used datasets only provide information on the short-run worker flows because
they do not track individual workers, nor do they provide information on workers’ past sector
choice history or tenure.27 In such situations, a common approach in the literature is to assume
homogeneous workers and calibrate models by matching the one-period worker flow matrix.
Lemma 2 shows how this calibration practice effectively extrapolates longer-run worker flows
and why this extrapolation is necessarily biased. In Section 4, we indeed show that the canonical
model performs poorly in matching the longer-run worker flow patterns observed in the data.

3.2 Counterfactual Predictions with and without Persistent Heterogeneity

Combining Lemma 2 with our sufficient statistics result, we can theoretically characterize
the systematic biases in counterfactual predictions that arise from assuming away persistent

26 This is known as the Chapman-Kolmogorov equation in the theory of Markovian processes.
27 Even when researchers use panel data that contain the necessary information, it is unclear whether the model

correctly matches longer-run worker flows unless they are directly targeted.
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heterogeneity. For the moment, we consider shocks to exogenously given wages, as in
Proposition 1. For simplicity, we focus on a uniform permanent shock, either positive or
negative, to a sector s ∈ S that is known to workers in period 1:

dwst = ∆ ∈ R, ∀ t ≥ 1. (14)

For more general shocks, Appendix A.6 characterizes the effect of one-time shocks, from
which we can calculate the effect of any sequence of shocks.

Counterfactual Welfare Changes. We begin with welfare changes. Compared to the predic-
tions of the canonical model, workers who are initially employed in sector s are more likely to
remain in the sector and to be affected by the wage change for a longer period of time. As a
result, ignoring worker heterogeneity leads to underestimation of the welfare changes of these
workers. This observation is formalized in Proposition 3.

Proposition 3. Consider a uniform permanent shock of the form (14) known to workers in
period 1. The canonical model, calibrated by matching the one-period worker flow matrix,
underestimates the welfare effect on workers initially employed in sector s, | dvs1|.

Counterfactual Employment Changes. We now turn to labor reallocation. A shock to sector
s changes the employment share of that sector over time. This labor reallocation is characterized
by equation (11) of Proposition 1, which involves terms of the form Fk − Fk+2. For ease of
notation, we define bk as the diagonal element of Fk −Fk+2 that corresponds to sector s:

bk ≡ (Fk −Fk+2)s,s.

Roughly speaking, bk measures the rate at which the probability of remaining in sector s

decreases over time. To characterize the bias of the canonical model, we assume a single-
crossing condition on bk.

Assumption 3. There exists k̄ ∈ N such that bk is higher in the canonical model if and only if
k ≤ k̄.

This assumption requires that the probability of remaining in sector s initially decreases
faster in the canonical model, but eventually decreases faster in the heterogeneous-worker
model. Note that both models give the same value of the staying probabilities (Fk)s,s for
k = 0, 1, and the heterogeneous-worker model yields higher staying probabilities for all k ≥ 2.
Thus, staying probabilities must decrease faster in the canonical model for early periods. On
the other hand, if staying probabilities converge to similar levels in both models as k → ∞,
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then the decline should eventually become faster in the heterogeneous-worker model in order
to compensate for the initial faster decline. Assumption 3 further requires the existence of a
cutoff k̄ at which the order of the speed of decline is reversed. In Appendix A.5, we show that
this assumption indeed holds with k̄ = 9 (years) for the worker flow matrix series we observe
in the data. Under this assumption, the following proposition shows that the canonical model
initially overestimates the change in employment in sector s while underestimating the long-run
labor reallocation.

Proposition 4. Consider a uniform permanent shock of the form (14) known to agents in period
1. Under Assumption 3, there exists t̄ ∈ N∪{∞}\{1} such that the canonical model, calibrated
by matching the one-period worker flow matrix, overestimates the change in employment of
sector s in period t if and only if 1 < t ≤ t̄.

The result implies that whether assuming away persistent heterogeneity leads to overestima-
tion or underestimation of the labor reallocation depends on the time horizon. On the one hand,
as discussed in Lemma 2, the canonical model overestimates the mobility of workers across
sectors, leading to an overestimation of the change in employment of sector s. This intuition is
what Proposition 4 describes when t is small. On the other hand, in the heterogeneous-worker
model, once workers choose sector s, they have relatively higher probabilities of being stuck in
that sector. Thus, in the face of a permanent negative (positive, respectively) shock, workers
will dislike (like, respectively) sector s more relative to the canonical model. This aspect
works in the opposite direction to our previous intuition and may become dominant when t is
large enough.28 In Appendix A, we show that the worker flow matrix series we observe in the
data implies t̄ = 11 years. Thus, we can conclude that the canonical model overestimates the
impact of shocks on sectoral employment within an 11-year horizon but underestimates their
longer-run effects.

Until now, we have considered exogenous changes in sectoral wages. This scenario corre-
sponds, for example, to a small open economy with linear technology affected by changes in
world prices induced by trade liberalization. However, if wage changes are endogenously de-
termined by labor market equilibrium, different models may also generate different predictions
for wage changes in response to given exogenous shocks to the labor market. Interestingly,
with endogenously determined wages, the underestimation of the welfare effect characterized
in Proposition 3 is likely to be compounded by the overestimation of the speed of labor real-
location shown in Proposition 4. The intuition behind this is straightforward. Without loss
of generality, consider a negative shock to a sector. Proposition 4 implies that in response to
given negative wage changes, workers leave the sector more rapidly in the canonical model.

28 This is not always the case. In particular, there exists β̄ ∈ (0, 1) such that when β > β̄, the canonical model
overestimates the change in employment in sector s in all periods t.
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The resulting decrease in labor supply raises the marginal productivity of labor in that sector,
which partially offsets the initial decline in wages. Thus, the canonical model predicts a smaller
decline in wages, at least in the short term. This, combined with discounting of the future,
further contributes to underestimation of the welfare effect.

In sum, we show that the canonical model, without persistent worker heterogeneity, always
underestimates the welfare losses of adversely affected workers and overestimates the speed
of labor reallocation. In our counterfactual exercises in Section 5, we indeed document
sizable differences in welfare effects and labor reallocation with and without persistent worker
heterogeneity.

4. Sufficient Statistics in the Data

The sufficient statistics result in Proposition 2 requires three inputs to construct counterfactuals
for a given shock of interest: the worker flow matrix series, values of the parameters ρ and β,
and knowledge of the labor demand side. In this section, we first use longitudinal information
in the NLSY data to compute the aggregate worker flow matrices and compare them with those
implied by the canonical model without persistent worker heterogeneity. We then present a
method for estimating the value of ρ without specifying worker heterogeneity, which extends
the standard Euler-equation approach used in the literature. Finally, we impose β = 0.96 for
the subsequent analysis. In Section 5, we close the model by specifying details on the labor
demand side.

4.1 Observed Worker Flow Matrices

We compute worker flow matrices from the National Longitudinal Survey of Youth 1979, a
rich dataset compiled by the US Bureau of Labor Statistics.29 This survey follows a nationally
representative sample of workers from 1979 onward annually through 1994 and biennially
thereafter. The sample consists of workers who were between 14 and 21 years old as of
December 31, 1978, and entered the labor market in the 1980s. The NLSY79 provides detailed
information on education, race, gender, age, and, importantly, the sector of employment.
Specifically, we identify a worker’s sector of employment in a year as the sector in which
the worker was employed in the first week of that year.30 We mainly follow the data-cleaning

29 We also obtain quantitatively and qualitatively similar findings using the monthly Current Population Survey
dataset; see Section 5.

30 This ensures that we consistently measure mobility at a 1-year window.
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Figure 2. Worker Flow Matrix Series

Notes: Each marker in the figure represents the probability that workers choose the same sector after
k ∈ {1, 2, . . . , 18} years, Pr(st+k = s|st = s). There are four sectors: Agriculture and Construction,
Manufacturing, Communication and Trade, and Services and Others. Data source: NLSY79.

procedure of Lise and Postel-Vinay (2020).31 We consider worker flows across four broad
sectors: (i) Agriculture and Construction; (ii) Manufacturing; (iii) Communication and Trade;
and (iv) Services and Others.

Assuming that the economy was in a steady state between 1980 and 2000, we calculate
the series of worker flow matrices by pooling all observations in this period. Given the data
constraints, we only calculate the k-year worker flow matrices, Fk, up to k = 18. Figure 2
plots the diagonal elements of the obtained worker flow matrices. Each point represents
the probability of workers choosing the same sector after k years (i.e., Pr(st+k = s|st = s);
hereafter, k-year staying probability). 1-year staying probabilities are close to 80%, except in
the services sector, in which it is just below 90%. k-period staying probabilities decrease in k,
which reflects the diminishing impact of being in a particular sector in the past over time.

4.2 Bias of the Canonical Model

To quantify the bias of the canonical model characterized in Lemma 2, we calculate the worker
flow matrix series implied by the canonical model. Following Lemma 2, we compute the
implied k-year worker flow matrix by multiplying the 1-year matrix k times. We first compare
a specific diagonal element of the actual and the implied worker flow matrices: the k-year
staying probability for the manufacturing sector. This is the element of primary interest because

31 The survey comprises a cross-sectional subsample representative of young people living in the US and other
subsamples that target ethnic minorities, people in the military, and the poor. We only use the representative
subsample for our analysis. We also drop people seen in the military.
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our main counterfactual exercise in Section 5 examines the impact of the China shock on US
manufacturing sectors. Figure 3 plots both the actual staying probabilities (blue dots) and
those implied by the canonical model (red line). It clearly shows that the canonical model
significantly underestimates longer-run staying probabilities, which is in line with the prediction
of Lemma 2 and becomes particularly pronounced at longer horizons.32,33 Figure A.4 further
shows that this underestimation is not driven by the nonstationary nature of the data. The
result remains qualitatively and quantitatively similar even when nonstationarity is taken into
account.34

As we have seen in Section 3, this discrepancy arises because the likelihood of choosing
the manufacturing sector is higher for workers who have previously chosen the manufacturing
sector. Workers who have self-selected to stay in manufacturing exhibit a higher probability of
staying again in the following year, perhaps due to particularly high switching costs. Similarly,
workers who self-selected into manufacturing in the past are more likely to choose it again,
possibly owing to their comparative advantage.

The canonical model also underestimates the diagonal elements of the worker flow matrices
that correspond to the non-manufacturing sectors. In Figure 4, we plot all 4 × 4 elements of
the worker flow matrix series implied by the canonical model against the actual values in the
data. The points clustered below the 45-degree line correspond to the diagonal elements of the
worker flow matrices that are underestimated by the canonical model. To compensate for this
underestimation, the off-diagonal elements are overestimated, as seen in other points clustered
above the 45-degree line. Section 5 quantifies how this inconsistency translates into systematic
biases in counterfactual predictions of the effects of sectoral shocks.

32 Howard and Shao (2023) document a similar pattern for dynamic location choices. They explain this finding
with a model in which dynamics arise from spatially and persistently auto-correlated preferences rather than from
moving costs.

33 One concern is that this bias may mainly, or at least partly, reflect misclassification errors in the sector choice
data. Dvorkin (2023) studies the bias resulting from misclassification errors in the industry (and occupation)
information in the PSID and March CPS datasets. Such misclassification errors lead to overestimation of mobility,
as in this paper. However, it is unlikely that our results are mainly due to these errors. First, the NLSY data and
the monthly CPS (observations within four consecutive months) used in this paper are known to be less prone
to such errors (Moscarini and Thomsson, 2007). Second, a similar bias has also been documented for dynamic
location choices (Howard and Shao, 2023), which is difficult to attribute to misclassification errors.

34 In fact, the stationarity assumption is likely to lead to an underestimation of the gap between the actual and
implied staying probabilities. To see this, suppose that worker flow matrices for two periods t = 1, 2 are F 1 and
F 2, respectively. Under the stationarity assumption, we calculate the worker flow matrix F̄ , which is applied to
both periods, by taking an average of F 1 and F 2. Suppose that we put equal weights on F 1 and F 2. Then, we
have

(F 1F 2)ii ≈ (F 1)ii(F
2)ii ≤

(
(F 1)ii + (F 2)ii

2

)2
= (F̄ )2ii ≈ (F̄

2
)ii.

Thus, the implied two-period staying probability is overestimated under the stationarity assumption, leading to a
smaller gap between the actual and implied staying probabilities.
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Notes: Blue dots in the figure represent k-year
manufacturing staying probabilities. The red
solid line represents staying probabilities im-
plied by the canonical model. The blue solid
line represents the fit of the estimated two-type
worker model. Data source: NLSY79.

Notes: Red dots in the figure plot elements
of the worker flow matrix series implied
by the canonical model against those in
the data. Blue dots correspond to the
estimated two-type worker model. Data
source: NLSY79.

4.3 Understanding the Bias of the Canonical Model

Demographic and Socioeconomic Characteristics. Where does the bias of the canonical
model come from? One possibility is that worker heterogeneity in terms of observable
characteristics could explain most of the bias. If so, we can easily correct for the bias by simply
conditioning on these characteristics, obviating the need for our sufficient statistics approach.
However, we will demonstrate that this is not at all the case. The literature has discussed various
types of demographic and socioeconomic characteristics of workers. Here, we focus on three
dimensions—gender, race, and education—that have been found to be important determinants
of sectoral choices and welfare outcomes (e.g., Dix-Carneiro, 2014; Lee and Wolpin, 2006).
We divided people into male and female, Hispanic/Black and non-Hispanic/Black, and low-
skilled (less than high school and high school) and high-skilled (some college and college or
more). Unique combinations of these three dimensions of heterogeneity define eight worker
types. In Figure A.5, we plot the actual manufacturing staying probabilities separately for
the eight types. Indeed, workers who differ along these characteristics exhibit highly distinct
sectoral movement patterns. For example, low-skilled non-Hispanic/Black males are more
than twice as likely to stay in the manufacturing sector in the longer run than high-skilled
Hispanic/Black females. However, Figure 5 shows that these characteristics do not explain
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the gap observed in Figure 3. We plot the manufacturing staying probabilities implied by
the model that incorporates these three dimensions of observed characteristics. Specifically,
we consider a model with the eight observed worker types. For each worker type ωobs, we
can calculate the 1-year transition matrix (F ωobs

) directly from the data. Since workers are
assumed to be homogeneous within each of the eight types, their k-year transition matrix
can then be computed by (F ωobs

)k. Thus, the model-implied aggregate k-year worker flow
matrix is obtained by taking averages of these type-specific k-year transition matrices using
the steady-state type composition as the weight. The green solid line shows the result and is
almost indistinguishable from the red line, which plots the staying probabilities implied by the
canonical model. These types of observed characteristics provide only a minor improvement
in the model’s ability to explain the actual pattern of worker flows. If we also incorporate
age in the model, there is slight improvement in the fit, but the implied worker flow matrix
series still significantly differs from the actual one (purple solid line).35 In sum, workers with
different demographic and socioeconomic characteristics do indeed behave differently, but this
fact barely changes aggregate labor market dynamics.36 In turn, the sufficient statistics result
implies that adding these worker characteristics to a model does not cause substantial changes
in the results of the counterfactual analysis.37

Pure Duration Dependence. The limited role of demographic and socioeconomic charac-
teristics implies two possibilities: Either these characteristics are simply poor proxies for
underlying worker heterogeneity or the gap in Figure 3 arises from mechanisms other than
worker heterogeneity, such as duration dependence. A notable example is the accumulation
of sector-specific human capital, whereby otherwise identical workers who have spent more
time in manufacturing may have accumulated more manufacturing-specific human capital,
which renders them more likely to choose the sector again. Other examples include fixed
adjustment costs (e.g., Stokey, 2008); learning about match productivity (e.g., Jovanovic, 1979);

35 Age is a form of time-varying heterogeneity. To analyze this within the context of our persistent heterogeneity
framework, we categorize age into two groups, “old” and “young,” so that each represents about 50% of the total
sample.

36 Similar results can be found in various fields of economics. For example, Card, Rothstein, and Yi (2023) find
that only a modest fraction of the variation in average wages across commuting zones is explained by differences
in the observed characteristics of workers.

37 This means that the discrepancy in Figure 3 is mostly driven by within-type heterogeneity instead of
across-type heterogeneity. In ??, we demonstrate that we can observe similar gaps between actual and predicted
longer-run staying probabilities for each of the eight types. In particular, the gaps are more pronounced for female
Hispanic/Black workers.
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Notes: Blue dots in the figure represent k-
period manufacturing staying probabilities.
The blue solid line represents the fit of the
estimated two-type worker model. The red
solid line represents the fit of the estimated
canonical model. The green line incorporates
three observed characteristics. The purple line
also incorporates age. Data source: NLSY79.

Notes: Blue dots in the figure represent k-
period manufacturing staying probabilities cal-
culated using post-1990 data. Green and red
lines represent the staying probabilities im-
plied by the canonical model and the model
with five worker types, respectively. Data
source: NLSY79.

and psychological choice models (e.g., Cain, 1976).38 This raises concern, given that only the
first equation of Proposition 1 extends to the case with a duration dependence mechanism.

In response to this issue, we provide suggestive evidence that points to the importance of
worker heterogeneity in generating the gap in Figure 3. Our strategy involves constructing an
alternative proxy for worker heterogeneity. Instead of relying on demographic and socioeco-
nomic characteristics, we leverage workers’ sector choice histories prior to 1990 as a means
to capture their heterogeneity. Differences among workers materialize as differences in their
sector choice patterns, so their histories allow us to effectively control for their heterogeneity.
Specifically, we use pre-1990 data to compute the 1-year manufacturing staying probability
for each worker, then categorize workers into five types based on the quintiles of this proba-
bility. We then assess the extent to which accounting for these worker types narrows the gap
between actual and model-implied staying probabilities. In Figure 6, the actual k-year staying
probabilities calculated using post-1990 data are denoted by blue dots, while green and red

38 Distinguishing dynamic selection based on heterogeneity from duration dependence mechanisms is a
recurring theme in various fields of economics; see Heckman (1981) for an important early contribution along
these lines. Alvarez, Borovičková, and Shimer (2016) also study how to distinguish between the two in the context
of unemployment duration.

25



lines represent the staying probabilities implied by the canonical model and the model with
five worker types, respectively. Note that the red line is computed under the assumption that
workers are homogeneous within each of the five worker types and that there is no duration
dependence mechanism in play. The red line is close to the blue dots, and the gap between
the actual and implied staying probabilities is reduced by more than half. Given that worker
heterogeneity is only partially controlled for by sector choice history, this result suggests that at
least half of the gap is due to worker heterogeneity—the mechanism emphasized in this paper.

4.4 Extrapolation Using the Structural Model

To apply sufficient statistics results, we need a full sequence of worker flow matrices from k

equals one to infinity. Thus, we need a method to extrapolate longer-run worker flow matrices
from the available finite-length data. Leveraging the structural model provides a natural method
for extrapolation.39 For this purpose, we estimate the structural model by matching the worker
flow matrices we computed directly from the NLSY data, {Fk}18k=1. The estimated structural
model generates the full set of worker flow matrices, which are used in Section 5 to perform
counterfactual exercises.40 Since the structural model reduces to the canonical model when
there is only one worker type, this extrapolation is a strict generalization of the canonical
model’s extrapolation.

Specifically, we estimate the number of worker types along with their respective steady-state
instantaneous utility vectors wω

i and switching costs Cω
ij by matching 18 worker flow matrices

(i.e., 216 moments). Note from the worker’s sector-choice problem (1) that only the ratio
between these values and the parameter ρ can be identified from the observed worker flow
matrices. Thus, we only estimate these ratios until we estimate the value of ρ in Section 4.5.
Following Assumption 2, we impose symmetry on the switching costs. The estimation
process involves two steps: We first maximize the likelihood of observing {Fk}18k=1 to estimate
{1
ρ
wω

i ,
1
ρ
Cω

ij} for a given number of worker types, then use the Bayesian information criterion
to determine the number of worker types; see Appendix B.1 for more details.

39 This approach has the advantage that extrapolation is disciplined by the model. However, the sufficient
statistics approach does not, in principle, require that we estimate the details of the model. In Appendix B.3,
we explore alternative extrapolation methods that do not rely on a structural model. In addition to extrapolation,
there are two other benefits of the structural estimation. First, it serves as a proof of concept: By seeing whether
our structural model can match the observed worker flow matrix series, we can test whether our framework is
consistent with the data. Second, we can use the estimated structural model to evaluate the quality of the first-order
approximation around a steady state. In Section 5, we compare the results of counterfactual exercises computed
from the exact solution of the estimated model and those computed using the sufficient statistics result.

40 In fact, we can simply treat the estimated model as if it were the true model and use it to perform counterfactual
exercises directly. The sufficient statistics result guarantees that we will obtain correct counterfactual results
regardless of whether this model is true.
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Table 1: Estimation Results

|Ω| = 2 Type ω1 (31.1%) Type ω2 (68.9%)

Sector Wage Switching Cost Wage Switching Cost

Agri/Const
Manufacturing
Commu/Trade

Services/Others

0.58
0.60
0.66
0.77

 0.00 1.53 1.69 1.55
1.53 0.00 1.33 1.41
1.69 1.33 0.00 0.98
1.55 1.41 0.98 0.00

 1.02
1.02
1.00
1.07

 0.00 4.62 5.62 5.46
4.62 0.00 4.88 4.93
5.62 4.88 0.00 3.72
5.46 4.93 3.72 0.00



Table 1 shows the estimation result. The Bayesian information criterion supports the model
with two worker types. Figure 7 plots the resulting transition matrix for each type of worker.
The first type has a comparative advantage in non-manufacturing sectors and low switching
costs. Thus, workers of this type switch sectors frequently, as indicated by the small diagonal
elements of the transition matrix in Figure 7. In contrast, the second type has much higher
switching costs, so workers of this type rarely move to other sectors. In Appendix B.4, we show
how to interpret the figures in Table 1. In particular, paying one unit of switching costs means
paying 3.25% of lifetime consumption. Thus, the switching costs in Table 1 are at most less
than 20% of lifetime consumption. This is smaller than the estimates of ACM, who find that
the average switching cost is at least 20% of lifetime consumption. Our estimates are close to
those of Artuç and McLaren (2015), in which the switching costs are distributed around 12%
of lifetime consumption.41

We also estimate primitives of the canonical by matching the one-period worker flow matrix,
F1 (see Figure A.6 for the results). All parameters, including elements of the transition matrix,
lie between the corresponding parameters for the model with two worker types.

Model Fit. Figures 3 and 4 document the fit of the estimated model. The blue solid line
in Figure 3 represents the model-implied k-year staying probabilities for the manufacturing
sector. The figure shows that the model with only two worker types closely matches actual
short-run and longer-run staying probabilities. We obtain similar results for the other elements
of the worker flow matrices. In Figure 4 we use blue dots to plot all 4 × 4 elements of the
model-implied worker flow matrix series against the actual value in the data, along with the
45-degree line. Most of the dots lie roughly on the 45-degree line. The fit of the model is
surprising for two reasons. First, the degrees of freedom (19 parameters) are much smaller
than the number of moments we target (216 moments).42 Second, the dynamic discrete choice

41 As Artuç and McLaren (2015) argue, one reason for the smaller estimates is the inclusion of sector-specific
nonpecuniary benefits in the model, which are absent in ACM’s model.

42 Suppose we want to match only the 1-year worker flow matrix. We can perfectly match this matrix with only
one type of worker if we can choose an arbitrary transition matrix for this type. In terms of degrees of freedom,
we match N(N − 1) values with N(N − 1) parameters, where N = 4 is the number of sectors. Suppose we also
want to match one more worker flow matrix. This exercise can be seen as matching the level and slope of the dots
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Figure 7. Type-Specific Transition Matrix

framework imposes systematic restrictions on the model-implied worker flow matrices, so we
would not be able to match every worker flow matrix series even with an arbitrary number of
worker types.

The flexibility due to worker heterogeneity, characterized in Lemma 2, is necessary to
match the observed worker flow matrices. As seen in Section 4.2, the canonical model with one
type of workers fails to match the observed worker flow matrices. Table 1 clearly reveals why
the canonical model significantly underestimates longer-run staying probabilities. Workers of
the second type rarely change sectors and have comparative advantage in manufacturing. Thus,
conditioning on the fact that workers have previously self-selected into the manufacturing sector
greatly increases the probability that they are the second type, and thus increases the probability
that they will stay or choose again the manufacturing sector in subsequent periods. While the
fit of the model improves substantially with two types of workers, the additional increase in fit
from adding more types of workers is negligible, causing the Bayesian information criterion to
choose the two-type worker model. See Figure A.7 for comparison of the fits of the two-type
model and the five-type model.

Identification. Comparing the fits of the models does not necessarily identify the true number
of worker types, let alone the fact that two worker types cannot capture the multifaceted nature
of real-world worker differences. However, a key feature of our approach is that it does not
require identification of all elements of the true model. As long as the estimated model closely
approximates the observed worker flow matrix series, our sufficient statistics result ensures
that the model always provides valid counterfactuals for the outcome of interest—namely,
aggregate welfare and employment. This feature distinguishes our approach from the latent

in Figure 2. At least in terms of degrees of freedom, we can achieve this with only two types of workers: matching
2N(N − 1) values with 2N(N − 1) + 1 parameters (N(N − 1) parameters for each transition matrix, and 1 for
the type share). However, we also want to match the overall shape of the dots in Figure 2, and confine ourselves
to the case in which the type-specific transition matrices are generated by the structural primitives. Thus, we end
up with 19 parameters that can be used to match 216 moments.

28



variable approach in the literature, such as the finite mixture model and k-means clustering
(e.g., Arcidiacono and Jones, 2003; Heckman and Singer, 1984; Bonhomme, Lamadon, and
Manresa, 2022), in which the validity of counterfactual predictions requires a higher level of
confidence in identification.

4.5 Estimation of ρ

In this section, we present a novel strategy for estimating the parameter ρ, which, in conjunction
with the extrapolated worker flow matrix series, provides a complete description of the labor
supply side of the model. Our goal is to propose an estimation method that does not require
explicitly specifying the underlying heterogeneity.43 The possibility of such an estimation
is already suggested in the second equation of Proposition 1, which we restate here for
convenience:

d ln ℓt =
∑

s≥0,k≥0

βk+1

ρ
(Fs+k −Fs+k+2)Et−s−1 dwt−s+k. (15)

This equation describes the response of sectoral employment to wage shocks, with the co-
efficients depending only on the value of ρ and the worker flow matrix series, independent
of the specific details of worker heterogeneity. Thus, we can estimate ρ by measuring the
responsiveness of sectoral employment to sectoral wage shocks, conditional on the observed
worker flow matrix series.44

Implementation. In principle, equation (15) could be directly confronted with data to estimate
ρ, but this requires that we fully specify how much information workers have about the
future. The literature circumvents this demanding requirement by applying the Euler equation
approach first used in ACM (e.g., Artuç and McLaren, 2015; Caliendo, Dvorkin, and Parro,
2019; Traiberman, 2019). We extend the Euler equation approach by allowing for arbitrary
worker heterogeneity.45

43 In Propositions 1 and 2, we showed that the worker flow matrix series serves as sufficient statistics for
counterfactual exercises when we know the value of the parameter ρ. However, if the estimation procedure for ρ
depends on how we specify worker heterogeneity, the distribution of worker heterogeneity can affect the results of
counterfactual exercises through its effect on estimation of ρ. In this sense, our estimation method is comparable
to estimation of the trade elasticity using the gravity equation of Arkolakis, Costinot, and Rodríguez-Clare (2012).
Just as their estimation based on the gravity equation provides a valid estimate within a class of “quantitative trade
models,” our method yields a valid estimate within a specific class of dynamic discrete choice models.

44 The responsiveness is inversely related to the value of ρ. A higher value of ρ indicates that sector choice
decisions are primarily driven by idiosyncratic shocks. As a consequence, the impact of wage shocks on sectoral
employment is relatively diminished when ρ is high.

45 ACM (p.1040) write that “Perhaps the biggest weakness in the Euler-equation approach . . . is that it
assumes away workers with unobserved [heterogeneity] . . . . A full exploration of such effects probably requires a
structural micro approach.” However, the method described in this section demonstrates that up to the first-order
approximation, this problem can be circumvented.
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The key idea of the Euler equation approach is to transform (15) into a recursive representa-
tion. For example, in the absence of persistent worker heterogeneity, we can use the restriction
Fk = (F1)

k to rewrite equation (15) recursively as follows:46

d ln ℓt = (F−1
1 + βF1) d ln ℓt+1 − βEt d ln ℓt+2 − β

ρ
(F−1

1 −F1)Et dwt+1. (16)

See Appendix B.2 for proofs of the results in this section. However, with arbitrary worker
heterogeneity, this is impossible because the worker flow matrix series that determines the
coefficients of equation (15) is based on empirical data and does not have a recursive structure.
Nevertheless, we will demonstrate in two steps that it is still possible to derive an approximate
recursive representation of equation (15). First, in Appendix B.2, we show that when there
is a finite number of worker types, N , equation (15) always possesses an exact recursive
representation of the form47

d ln ℓt =
4N−2∑
k=1

ΓkEt d ln ℓt+k +
β
ρ

4N−3∑
k=1

ΛkEt dwt+k (17)

where Γk and Λk are functions of worker flow matrix series, {Fk}. Second, recall from
Section 4.4 that a model with two worker types provides a close approximation to the observed
worker flow matrix series {Fk} in the data. Combining these two findings, we can conclude
that equation (15), with {Fk} from the data, can be approximately represented in the recursive
form (17) with N = 2. In Appendix B.2.1, we provide formulas for computing {Γk}k=1,...,6 and
{Λk}k=1,...,5. In Figure A.8, we use simulation to demonstrate that the obtained approximate
recursive representation provides a close fit to the actual dynamics of sectoral employment.

We further modify the obtained recursive representation in two ways:

ln ℓt −
6∑

k=1

Γk ln ℓt+k =
β
ρ

5∑
k=1

Λkwt+k + ExpectationErrort+1,t+6 . (18)

First, instead of deviations from steady-state values, d ln ℓ and dw, we use the actual values, ln ℓ
and w. This is possible because the recursive representation always satisfies

∑6
k=1 Γk = I and∑5

k=1 Λk = O, where I is the identity matrix and O is the zero matrix. Second, the expected
values are substituted with the realized values plus an expectation error term that depends on
the news revealed between time t+ 1 and t+ 6.

46 Unlike equation (15), equation (16) contains only the term Et dwt+1 since the (expected) values of d ln ℓt+1

and d ln ℓt+2 summarize the effect of all other beliefs. Because of this advantage, the Euler equation approach
has been widely used in the literature, although previous studies have used equations that involve migration
probabilities rather than labor supply.

47 For further insights into how this result relates to the findings of Granger and Morris (1976), see Appendix B.2.
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Equation (18) is our regression specification, where we regress the left-hand-side variable
on the explanatory variable on the right-hand side,

∑5
k=1 Λk dwt+k, to estimate β

ρ
. However,

since both the explanatory variable and the expectation error term are affected by newly
revealed information between period t+1 and t+6, they are likely to be correlated. To address
this concern, we follow ACM and use past values of sectoral labor allocation and wages as
instruments. Any variables included in the period t information set are theoretically valid
instruments for the explanatory variable, providing a consistent estimate of ρ. In particular,
we use the 1-year lag of sectoral wages and sectoral employment shares. For this approach to
be valid, it is necessary to assume that workers have rational expectations and that the error
term in equation (18) only reflects errors in workers’ forecasts. If this term also incorporates
shocks to the labor supply curve (e.g., unexpected aggregate shifts in preferences for particular
sectors), we must assume an exclusion restriction whereby such shocks are uncorrelated with
our instruments. For a discussion of the strengths and weaknesses of this approach in the case
of homogeneous workers, refer to ACM and Traiberman (2019). Also, we include sector fixed
effects in the regression to isolate within-sector variation from across-sector variation.

Our estimation method requires data on sectoral employment and sectoral wages. We use
the Bureau of Labor Statistics’ Current Employment Surveys (CES) to compute the time series
of these variables. We use the share of workers in the dataset employed in each sector as
our measure of sectoral labor allocation and average wages in each sector as our measure of
sectoral wages. We again consider four broad sectors.48 In Section 5, we will compare the
counterfactual predictions of our model with those of Caliendo, Dvorkin, and Parro (2019),
who analyze a homogeneous counterpart of our model. To facilitate clear comparison, we
assume that the variable w represents the log sectoral wage.

Table 2 presents the estimation results. Column (1) estimates equation (18) by OLS. The
estimated coefficient and the implied value of ρ are negative and insignificant. In Column (2),
we estimate the same specification using IV. The implied value of ρ is 0.825. This means that
a one standard deviation higher realization of the idiosyncratic shock is associated with 4.06%
higher lifetime consumption (see Appendix B.4). Comparing the results in Columns (1) and (2),
it appears that the estimated coefficient β̂/ρ from OLS is biased downward due to the presence
of expectation errors. This is consistent with the fact that expectation errors are likely to cause

48 The assumption of a four-sector model raises an econometric issue similar to the one discussed by ACM.
If the true model consists of more than four sectors with a dispersion parameter ρ, is it valid to approximate
the model with a four-sector model and estimate the dispersion parameter based on this approximation? More
importantly, can we use it to conduct counterfactual exercises? We can demonstrate that under certain assumptions
on switching costs, the validity of using the approximated model is supported by the fact that the maximum of
i.i.d. type I extreme-value distributed random variables follows another type I extreme-value distribution with the
same scale parameter.
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Table 2: Estimation of ρ

(1) (2) (3)

β/ρ -0.286 1.164∗∗ 0.877∗∗∗
(0.311) (0.550) (0.296)

Implied ρ -3.358 0.825∗∗ 1.095∗∗∗
(3.652) (0.390) (0.369)

Method OLS IV IV
Persistent Heterogeneity ✓ ✓

No Persistent Heterogeneity ✓

Observations 136 136 136
First-stage F − 38.7 11.1

Notes: OLS and IV estimation results for specification (18) (heterogeneous
workers: Columns (1) and (2)) and (16) (homogeneous workers: Column
(3)). Standard errors robust to heteroskedasticity are reported in parentheses,
with ∗∗∗ : p < 0.01. Data source is NLSY79 and BLS.

sectoral labor supply and sectoral wages to be negatively correlated.49 The estimate in Column
(2) implies that a temporary 1% decline in manufacturing wages leads to a 0.35% decrease in
the manufacturing share, while a permanent 1% decline in manufacturing wages is associated
with a 1.15% decrease in the manufacturing share. In column (3), we assume that workers are
homogeneous and estimate equation (16) by IV with the same set of instrument variables. The
implied value of ρ is slightly higher than our preferred estimate, but we cannot reject the null
of equality between the two. Estimates in Columns (2) and (3) are broadly consistent with the
estimates of ρ in the literature, which range from 0.5 to 2. The original ACM and subsequent
papers estimate ρ to be around two. A more recent paper, Artuç and McLaren (2015), suggests
a value of ρ = 0.62. Also, Rodriguez-Clare, Ulate, and Vasquez (2022) obtain a similar value
of ρ = 0.56.50 This estimate in Column (2) is our preferred specification, and we will use it in
the subsequent analysis. However, our purpose is to see how the results of the counterfactual
exercises would change if we accounted for worker heterogeneity—not to see how different
values of ρ would change the results. Thus, we will also report the results of counterfactual
exercises under ρ = 0.5 and ρ = 2 in the Appendix.

49 If workers wrongly expect an increase in wages in a sector, they would supply more labor to that sector. This
increased labor supply would lead to a decrease in wages in that sector.

50 Note that ACM and other papers in the literature assume instantaneous utility linear in wage. This implies
that the value of ρ governs semi-elasticity ∂ ln ℓt+k

∂waget
instead of elasticity ∂ ln ℓt+k

∂ lnwaget
. However, because they normalize

sectoral wages so that the average annualized wage equals unity, both the semi-elasticity and elasticity can be
interpreted as the percentage change in sectoral employment in response to a percentage change in sectoral wages.
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We now move on to the application of our model, in which we use the estimated model
with worker heterogeneity to quantify the effect of sectoral shocks.

5. Applications

In this section, we consider two sectoral shocks and quantify the implication of persistent
worker heterogeneity for welfare and labor reallocation. We first apply our results to a stylized
trade liberalization exercise of ACM, which illustrates how the framework of the literature can
easily be extended to allow for worker heterogeneity. For a more realistic application, we then
examine the dynamic effects of the rise in China’s import competition on US labor markets.
We revisit this extensively studied topic using the sufficient statistics approach. Although we
focus on these two exercises, our result can be applied more generally to other papers in the
literature.

5.1 Permanent Decline in Manufacturing Prices

The first counterfactual exercise closely follows ACM and considers an unanticipated permanent
10% drop in manufacturing prices for a small open economy—for example, due to trade
liberalization. Following Section 2, we incorporate persistent worker heterogeneity in the labor
supply side of the model, which is calibrated in Section 4. We specify the labor demand side of
the model as in ACM. We assume log utility with Cobb-Douglas consumption aggregate and a
sector-specific CES production function with fixed capital stock. All goods are traded and their
prices are exogenously given at world price level. Sectoral wages are competitively determined
by the marginal productivity of labor. The labor demand side of the model is calibrated exactly
as in ACM; see Appendix C.1 for details. Initially, the economy is in a steady state. Since
wages are endogenously determined by the labor market equilibrium, we apply Proposition 2
to compute the perfect-foresight transition path following announcement of the shock in year 1
until the economy reaches a new steady state.

Figure 8 shows results of the counterfactual exercise. In Figure 8a, we plot the dynamics
of sectoral employment predicted by the models with and without worker heterogeneity. The
manufacturing employment share drops sharply, by around 20%. Importantly, the canonical
model overestimates the short-term labor reallocation, resulting in a much faster transition to
the new steady state. The transition is completed within 10 years in the absence of worker
heterogeneity, while it takes more than 50 years with worker heterogeneity. At the same time,
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Figure 8. Counterfactual Changes in Sectoral Employment and Welfare: Trade Liberaliza-
tion

Notes: This figure plots the transitional dynamics following an unexpected permanent drop in manufac-
turing prices. Solid lines correspond to the prediction from the sufficient statistics in the data, and dashed
lines correspond to the prediction of the canonical model without persistent worker heterogeneity.

the canonical model underestimates the magnitude of long-term reallocation. All of these
results are consistent with the predictions of Proposition 4.51

In Figure 8b, we plot changes in welfare, measured in terms of consumption-equivalent
variation; that is, the proportional change in the lifetime consumption sequence that would
have the same effect on household welfare as would the welfare effect of the China shock. In
particular, solid bars represent the welfare changes of workers based on their initial sector
of employment predicted by the model. Hatched bars represent welfare changes implied by
the canonical model. The result shows that even workers who were initially employed in
manufacturing—the import-competing sector—benefit from trade liberalization. The increase
in option value, driven by the increase in real wages in other sectors, more than compensates for
the decline in manufacturing wages.52 However, consistent with the prediction of Proposition 3,

51 In Appendix C.1, we compute the impulse responses of sectoral employment from the observed worker flow
matrix series. As predicted by Proposition A.4, the canonical model tends to overestimate the short-term impact of
shocks on sectoral employment but underestimates their long-term effects. Notably, within a 7-year time horizon,
the canonical model consistently overestimates the effects of shocks on sectoral employment. This explains
the difference between changes in sectoral employment in the models with and without worker heterogeneity
documented in Figure 8a.

52 Figure A.9 plots the time path of changes in sectoral wages. The real wage of the manufacturing sector
initially overshoots because it takes time for labor to adjust. As the number of workers in manufacturing gradually
declines, manufacturing wages rise and eventually exceed the preshock steady-state level. However, they increase
less than those in other sectors. Thus, the manufacturing employment share declines over time and in the new
steady state.
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the canonical model overestimates the gains of manufacturing workers by a factor of almost
two. At the same time, it slightly underestimates the gains of non-manufacturing sector
workers, resulting in substantial underestimation of the distributional consequences of trade
liberalization.

As discussed in Section 3, the welfare gains of manufacturing workers are overestimated
in the canonical model for two reasons. Not only does it overestimate welfare gains for given
wage changes, but it also predicts a smaller decline in manufacturing wages in the short
term. To illustrate this, we show in Figure A.10 that if we used the changes in sectoral wages
computed from the canonical model—instead of endogenizing them—and combined them
with the worker flow matrix series as in Proposition 1, we would get a narrower gap between
the welfare changes predicted by models with and without worker heterogeneity.

To gain deeper understanding of the disparities between models with and without hetero-
geneity, we plot changes in sectoral values and employment shares separately for each of the
two worker types in Figure A.11.53 When the shock hits the economy, type 1 workers, who
have lower switching costs and comparative advantage in non-manufacturing sectors, can easily
move out of manufacturing and enjoy a higher welfare gain from the shock. Over time, as more
type 2 workers leave the manufacturing sector, manufacturing wages begin to recover. Given
that type 2 workers are more likely to be stuck in the manufacturing sector once they choose it,
they dislike manufacturing more than type 1 workers, resulting in a higher proportion of type 1
workers in the manufacturing sector in the long run.

Finally, we assess the quality of the first-order approximation around a steady state. In
Figure A.12, we compare the results of the counterfactual exercises obtained using sufficient
statistics formulas with those calculated from the exact solution of the estimated structural
model.54 Despite the relatively large magnitude of the 10% shock considered in this section, the
sufficient statistics results deliver a close approximation. In particular, the approximation error
is an order of magnitude smaller than the difference between the counterfactual predictions of
the models with and without worker heterogeneity. The approximation error becomes almost
negligible for a shock size of 1%, but becomes more pronounced as the shock size increases to
30%.

53 An important caveat to this interpretation pertains to the identification of the structural model. In estimating
the structural model, many configurations of the model primitives are almost equally successful in matching the
worker flow matrix series. This means that even small changes in the observed matrices can lead to significantly
different estimation results. Thus, statements made at the unobserved type level should be viewed with caution,
since they may be far from the real world.

54 Figure A.12 also demonstrates that the exact value changes always exceed those calculated using a first-order
approximation. We can show analytically that the second-order term is always positive due to the option value.
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5.2 The China Shock

As a second application, we apply our sufficient statistics result to a more realistic counterfactual
exercise: the dynamic impact of the growth of China’s manufacturing productivity and the
resulting import competition on the welfare of US workers and labor reallocation. We
closely follow the dynamic quantitative trade model of Caliendo, Dvorkin, and Parro (2019)
(hereafter, CDP) and extend the labor supply side by allowing for arbitrary persistent worker
heterogeneity.55 We make two simplifying assumptions relative to the original specification of
CDP. First, we consider four broad sectors—Manufacturing, Wholesale/Retail, Construction,
and Services—and another auxiliary sector representing nonemployment.56 Second, for reasons
discussed shortly, we abstract from interstate migration and assume that workers can switch
sectors only within each state.57,58 We first describe the labor supply side, then specify the labor
demand side and the shock of interest to close the model.

Labor Supply Side. Two observations motivate us to conduct a separate analysis for each
of the 50 US states. First, it is well known that there is considerable variation in exposure
to the China shock across different geographic regions in the US (see, for example, Autor,
Dorn, and Hanson, 2013; Acemoglu et al., 2016). This suggests that Assumption 1 is better
imposed within each state. Second, as shown in Figure A.15, worker flow matrices differ
significantly across states; workers in states with a higher manufacturing employment share
are more likely to remain in the manufacturing sector over time. By applying the sufficient
statistics approach at state level, we can account for such state-level heterogeneity. Under our
simplifying assumptions, we can focus on 5-by-5 intersectoral worker flow matrices for each
state.

55 A large body of subsequent literature studies additional elements that are missing in this framework:
involuntary unemployment from downward nominal wage rigidities or search frictions (Kim and Vogel, 2021;
Rodriguez-Clare, Ulate, and Vasquez, 2022); endogenous trade imbalances (Dix-Carneiro et al., 2023); occupation
adjustment (Traiberman, 2019); learning and expectations (Fan, Hong, and Parro, 2023); and currency pegs (Kim,
de la Barrera, and Fukui, 2023). Incorporating worker heterogeneity in models with these additional features is
an important direction for future research.

56 In CDP, there are 23 sectors: 12 from Manufacturing, 8 from Services, and 1 each for Wholesale/Retail,
Construction, and nonemployment.

57 CDP uses an 1150-by-1150 quarterly worker flow matrix between all US state-sector pairs (50 states,
excluding the District of Columbia and the territories, and 22 sectors plus 1 additional sector representing
non-employment). However, we need to estimate the longer-run worker flow matrix as well as the short-run one,
and estimating them at this level of granularity is practically impossible.

58 In principle, allowing for regional migration would dampen the welfare effects because it provides an
additional margin of adjustment. However, US workers change sectors almost 10 to 100 times more often than
they change states, which suggests that the majority of the labor adjustment occurs at the sector change margin.
In the same context of the China shock, Rodriguez-Clare, Ulate, and Vasquez (2022) also show that ignoring
migration makes little difference for their model’s prediction. Autor, Dorn, and Hanson (2013) and Autor et al.
(2014) also demonstrate that regional migration is not an important mechanism through which the economy
adjusts to the China shock.
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State-level analysis requires computation of a worker flow matrix series for each state.
However, the limited sample size of the NLSY data makes it difficult to estimate them
accurately. Thus, we instead use the monthly Current Population Survey (CPS) dataset,
which contains a substantial sample size for each state. This dataset tracks workers for 4
consecutive months, which allows us to compute worker flow matrices F state

k for k = 1, 2, 3

months for each state. Specifically, we assume that the US was in a steady state before the
China shock and compute worker flows by pooling transition observations between January
1995 and December 1999.59,60 To compute worker flow matrices for other values of k, we
follow Section 4 and estimate the structural model with two types of workers by matching the
observed worker flow matrices. We then use the estimated model to extrapolate longer-run
worker flow matrix series.61 In Figure A.17, we compare the fits of the models with and without
worker heterogeneity to the observed worker flow matrix series. While the fits of the models
vary across states, the canonical model consistently underestimates the staying probabilities.
Finally, we use the value of the parameter ρ estimated in Section 4.62

Labor Demand Side and the China Shock. The labor demand side of the model is more
complex than in Section 5.1: It features a large number of labor markets distinguished by
sector and region, international trade, interregional trade within the US, input-output linkages,
and multiple production inputs. Appendix C.2 describes the primitive assumptions of the
model regarding households’ consumption and sector choices; intermediate goods and final
goods producing firms’ profit maximization; and the definition of a sequential competitive
equilibrium. We follow CDP in calibrating the structural parameters of the labor demand side;
see Appendix C.2 for details of the calibration. The shock of interest is the growth of China’s

59 In contrast to the literature, which often uses only one worker flow matrix—either monthly (k = 1) or
quarterly (k = 3)—we exploit the information contained in all worker flow matrices to identify underlying
persistent worker heterogeneity. For any k, if we use the k-period worker flow matrix F state

k and rely on the
homogeneous-worker assumption to calculate the remaining worker flow matrices, we would underestimate the
diagonal elements of k′-period worker flow matrices for k′ greater than k.

60 The monthly CPS dataset also tracks workers again for 4 additional consecutive months after 8 months after
the first 4 consecutive months. Thus, in principle, we can observe F state

k for k = 1, 2, 3, 12, 13, 14, 15. However, it
is well known that the monthly CPS dataset suffers from underestimation of staying probabilities when comparing
the first 4 months with the second 4 months because sectors are coded independently between these months (e.g.,
Kambourov and Manovskii, 2013). This can be clearly seen in Figure A.16, where we plot the manufacturing
staying probabilities. This underestimation is critical to our analysis, so we focus only on the first three worker
flow matrices. This also minimizes concerns about sample attrition and the resulting selection (e.g., Moscarini
and Thomsson, 2007).

61 One concern is that this requires too much extrapolation. In Figure A.19, we compare the extrapolated
state-specific worker flow matrix series with the aggregate worker flow matrix series we computed in Section 4.
Reassuringly, the average state-specific worker flow matrix series behaves very similarly to the aggregate series.

62 The estimated ρ is at the opposite extreme of the CDP’s estimate within the range of estimates in the literature.
Thus, we also report results under the CDP’s estimate in Section 4.5. Another issue is that we estimate the
parameter ρ at annual frequency. In Appendix C.2, we present a way to transform this to quarterly frequency. The
resulting value is given by ρ = 1.0011.
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Figure 9. Effect of the China Shock on Welfare

manufacturing productivity. Following CDP, we consider the China shock to be a sequence
of shocks to the growth rate of total factor productivity (TFP) of the Chinese manufacturing
sector from 2000 to 2007, assuming a constant fundamental thereafter. We also assume that US
agents anticipated the China shock in 2000 exactly as it occurred. We calibrate manufacturing
productivity growth such that the model’s predicted increase in US imports from China exactly
matches the predicted increase in imports, using the increase in imports from China of the
other eight advanced economies as an instrument. See Appendix C.1 for detailed calibration
of the China shock.

Counterfactual Results. For exogenous changes in the manufacturing productivity of China,
US sectoral wages are endogenously determined by the labor market equilibrium. Thus, we
again use Proposition 2 to calculate counterfactual changes in sectoral welfare and sectoral
employment. Given the rich structure of the model, it is computationally demanding to
estimate all exogenous state variables of the model—including productivities, labor mobility
costs, and trade costs—for every period. We reduce the computational burden by extending
the CDP’s dynamic hat algebra to models with arbitrary worker heterogeneity using our
sufficient statistics result; see Appendix C.2 for details.63 Figures 9 and 10 plot the results of
counterfactual exercises computed using the sufficient statistics approach.

63 Dynamic hat algebra solves the equilibrium of the model in terms of time differences and differences between
the actual and counterfactual economies. This method allows one to perform counterfactual exercises without
the need to estimate the level of exogenous state variables of the model. For this reason, it is widely used in the
literature (e.g., Rodriguez-Clare, Ulate, and Vasquez, 2022; Caliendo et al., 2021; Balboni, 2019; Kleinman, Liu,
and Redding, 2023).
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Figure 10. Effect of the China Shock on Sectoral Employment

Sectoral Employment Changes. Figure 9a plots the dynamic response of US sectoral employ-
ment to the China shock for models with and without worker heterogeneity. In both models,
the increase in the manufacturing productivity of China shifts manufacturing production from
the US to China, resulting in a decline in the share of US manufacturing employment (top
left panel). With worker heterogeneity, the China shock reduces the share of manufacturing
employment by around 0.2 percentage points (or, equivalently, 0.45 million manufacturing jobs)
after 10 years. At the same time, the China shock increases employment in the construction
and services sectors, as observed in the data. These sectors benefit from access to cheaper
intermediate goods made available by the China shock. Dashed lines plot changes in the
sectoral employment share predicted by the canonical model. As expected from Proposition 4,
the canonical model consistently overestimates the extent of labor reallocation by up to 50%.
Figure 9b presents a histogram of state-level changes in manufacturing employment after 5
years. The impact of the China shock varies across states in both models, but in line with
Figure 9a, the contraction of manufacturing is faster in the canonical model.

Welfare Changes. In terms of welfare, the heterogeneous-worker model predicts a 0.09%
increase (in terms of consumption-equivalent variation), which is similar to the 0.11% welfare
change predicted by the canonical model. Despite this similarity, the two models differ in
their predictions regarding the distributional conflicts—how much the winners win and the
losers lose. In Figure 10a, we plot sectoral welfare changes measured at the time the China
shock was known to the US labor market. Again, solid bars represent sectoral welfare changes
predicted using the sufficient statistics in the data, and hatched bars represent those implied
by the canonical model. As in Section 5.1, both models predict that even workers who were
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initially employed in the manufacturing sector benefit from the China shock. However, as
expected from the results of Proposition 3, the canonical model significantly overestimates
the welfare gain of manufacturing workers, but underestimates the welfare gain of workers in
non-manufacturing sectors. Thus, the model significantly underestimates the distributional
impact of the China shock. In particular, in the absence of worker heterogeneity, workers who
were initially employed in the manufacturing sector enjoy about the same welfare gains as
non-manufacturing workers. However, once we account for worker heterogeneity and correctly
match longer-run worker flow patterns, their average gain becomes less than half the gains of
workers in the other sectors.

Similar to employment effects, the welfare impact of China’s import competition varies
substantially across regions. In Figure 10b, we present a histogram of state-level changes in
the welfare of manufacturing workers. In the canonical model, manufacturing workers in all
states benefit from the China shock. In contrast, the heterogeneous-worker model predicts that
the welfare gain of manufacturing workers is close to zero in most states, and manufacturing
workers from five states—Alabama, Illinois, Louisiana, Michigan, and Ohio—experience a
decline in welfare.64 These states have the highest manufacturing employment shares and
experience higher reallocation from manufacturing to nonemployment. The figure also shows
that worker heterogeneity not only amplifies the negative welfare effects of the China shock
but also increases regional disparities in the welfare effects on manufacturing workers.

Figure A.21 presents the percentage changes in sectoral wages averaged across states
induced by the China shock. The average effect is positive for all sectors, although some states
experience declines in the manufacturing real wage. In contrast, non-manufacturing sectors
experience wage increases in all states. More importantly, the heterogeneous-worker model
predicts slower labor reallocation from manufacturing to non-manufacturing, resulting in a
larger decline in manufacturing wages. Motivated by this observation, in Figure A.22 we plot
sectoral welfare changes calculated by combining the worker flow matrix series implied by
the heterogeneous-worker model and sectoral real wage changes implied by the model without
worker heterogeneity. The result implies that around a quarter of the welfare change gap
between the two models arises from this difference in real wage changes, and the remaining
three-quarters result from differences in the worker flow matrix series. This highlights the
importance of endogenizing wage changes when studying the role of worker heterogeneity.

In sum, results of the counterfactual exercises demonstrate the quantitative importance of
accounting for worker heterogeneity.

64 Workers from these five states continue to experience negative welfare effects even in the long run, which is
in stark contrast to findings in the literature.
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6. Concluding Remarks

Large economic shocks often have asymmetric effects across different sectors. Such shocks can
necessitate substantial labor reallocation across sectors and may have significant distributional
consequences for workers employed in different sectors. The key determinant of the dynamic
effects of sectoral shocks is the ease with which workers can switch sectors over time. In this
paper, we develop a dynamic sector choice model that incorporates a self-selection mechanism
based on persistent worker heterogeneity in an otherwise standard dynamic discrete choice
framework. Our sufficient statistics approach, which relies on the information contained in
steady-state worker flows over various horizons, highlights in a transparent way the critical role
of this self-selection mechanism in shaping the dynamic effects of sectoral shocks. Assuming
away persistent worker heterogeneity results in overestimation of steady-state worker flows,
which in turn leads to underestimation of the distributional consequences and overestimation
of the speed of labor reallocation.

By revisiting the two applications in the literature using our empirical estimates of the
sufficient statistics, we illustrate the applicability of our approach and quantify the importance
of the added flexibility from worker heterogeneity. Our results present a more pessimistic
view of the consequences of sectoral shocks: The reallocation of workers is significantly
slower, and the welfare losses of adversely affected workers are more severe than previously
suggested. Although we have focused on specific applications in this paper, the general insights
we have developed could be applied more broadly—not only to other sectoral shocks but also
to models that incorporate richer mechanisms. For example, if involuntary unemployment is
considered, our finding that workers are more likely to be stuck in a negatively affected sector
will materialize as a higher unemployment rate in that sector, leading to even greater welfare
losses. Applying our approach in the context of different shocks and to models with additional
structures is an important direction for future research.
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Appendix

A. Theoretical Appendix

A.1 Aggregation Result: Proposition 1

In this section, we first prove a general result that does not rely on Assumption 2. In the next section,
we show how Assumption 2 simplifies this result. To state the general result, we define another type of
worker flow matrices. As we will demonstrate, two types of worker flow matrices are sufficient statistics
for characterizing the welfare and labor market consequences of sectoral shocks.

Definition A.1. For each m, k ∈ N, the (m, k)-period worker flow matrix, is an S × S matrix denoted
as Fm,k whose (i, j)-element is given by

(Fm,k)i,j = Pr(sτ(t,m)+k = j|st = i),

where the random variable τ(t,m) ≡ min{τ ≥ t : sτ = st−m} denotes the first period in which a worker
returns to the sector she chose m periods ago.

The (i, j)-element of the (m, k)-period worker flow matrix equals the steady-state probability that a
randomly selected worker from sector i will move to sector j after k periods after returning to the sector
she chose m periods ago.

To formalize the idea of aggregation, we define the population-average operator.

Definition A.2. The population-average operator Ēω is an operator that can be applied to S×N matrices
for any N ∈ N. It maps a type-specific matrix to an aggregate matrix,a

ω
11 · · · aω1N
... . . . ...
aωS1 · · · aωSN

 7→
∑
ω

 ℓ̃
ω
1 a

ω
11 · · · ℓ̃ω1 aω1N

... . . . ...
ℓ̃ωSa

ω
S1 · · · ℓ̃ωSaωSN


where ℓ̃ωi =

ℓωi∑
ω′ ℓω

′
i

= Pr(ω|st = i) is the steady-state proportion of type ω in sector i.

If the i-th row of a matrix contains variables related to sector i, then the steady-state type distribution
of sector i gives the appropriate weights for computing the average across different types. This is precisely
how the population-average operator is defined. The following lemma shows that certain type-specific
variables can be converted to their aggregate equivalents through application of the population-average
operator.65

65 The population-average operator does not transform all type-specific variables into their aggregate coun-
terparts. For example, nonlinear functions of d ln ℓωt+1, dvωt , or (F ω)k do not possess this property (e.g.,
Ēw dℓωt+1 ̸= dℓt+1).
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Lemma A.1. If we apply the population-average operator to d ln ℓωt+1, dvωt , (F ω)k, or (Bω)m(F ω)k, we
obtain aggregate variables:

Ēω d ln ℓωt+1 = d ln ℓt+1

Ēω dvωt = dvt

Ēω

[
(F ω)k

]
= Fk

Ēω

[
(Bω)m(F ω)k

]
= Fm,k.

In particular, with infinite-length longitudinal information on workers’ sector choices, we can
observe Ēω[(F

ω)k] and Ēω[(B
ω)m(F ω)k] for all k,m ∈ N0.66 We can now apply the population-average

operator to the left- and right-hand sides of equations (7) and (8) to derive a general version of the
sufficient statistics result. First, we have

dvt = Ēω dvωt = Ēω

[∑
k≥0

(βF ω)kEt dwt+k

]
=
∑
k≥0

βkĒω

[
(F ω)k

]
Et dwt+k

=
∑
k≥0

βkFkEt dwt+k.

Second, we have

d ln ℓt = Ēω d ln ℓωt

= Ēω

[
β
ρ

∑
s≥0

(Bω)s(I −BωF ω)

(∑
k≥0

(βF ω)kEt−s−1 dw
ω
t−s+k

)]

= Ēω

[ ∑
s≥0,k≥0

βk+1

ρ

(
(Bω)s(F ω)k − (Bω)s+1(F ω)k+1

)
Et−s−1 dwt−s+k

]
=

∑
s≥0,k≥0

βk+1

ρ (Fs,k −Fs+1,k+1)Et−s−1 dwt−s+k.

The result is summarized in the following proposition.

Proposition A.1 (Sufficient Statistics Result without Assumption 2). Suppose that Assumption 1 holds.
For a given sequence of (common) changes in sectoral wages {dwt}, the changes in sectoral value and

66 For the second type of worker flow matrices, this requires an additional assumption that (Fk)i,j is strictly
positive for all i, j ∈ S, and k ∈ N.
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sectoral employment are given by

dvt =
∑
k≥0

βkFkEt dwt+k,

d ln ℓt =
∑

s≥0,k≥0

βk+1

ρ (Fs,k −Fs+1,k+1)Et−s−1 dwt−s+k.

Proposition A.1 establishes that in order to construct the counterfactual changes in welfare and
sectoral employment for a given sequence of sectoral wage changes, we only require knowledge of the
two types of worker flow matrices, {Fk} and {Fs,k}, and the parameter ρ that governs the dispersion of
the idiosyncratic shocks. Proposition 2 can be generalized in a similar manner.

A.2 Simplified Sufficient Statistics Result under Assumption 2

Lemma A.1 demonstrates that with infinite-length longitudinal information on workers’ sector choices,
we can observe two types of worker flow matrices, {Fk} and {Fm,k}, for all k and m. In practice,
however, we can only observe them for small enough k and m due to the finite nature of the real-world
datasets. The following lemma characterizes a certain symmetry property satisfied by the second type
of worker flow matrices that can be used to reduce the data requirements.

Lemma A.2. We have ℓ1 0
. . .

0 ℓN

Fm,k = (Fk,m)T

ℓ1 0
. . .

0 ℓN

.
However, the data requirements for estimating the second type of worker flow matrices are still very

demanding. In this section, we show how these data requirements can be significantly reduced under an
additional assumption.

Lemma A.3. Under Assumption 2, we haveBω = F ω for all ω ∈ Ω. In this case, we have Fm,k = Fm+k.

Assumption 2 imposes a certain structure on the sector-switching costs. Lemma A.3 shows that
this assumption implies the equality between the backward transition matrix and the forward transition
matrix, which in turn implies that the second type of worker flow matrices reduces to the first type of
worker flow matrices.67 Thus, we can focus on the first type of worker flow matrices, and Proposition A.1
is simplified to Proposition 1 in the main text.

In the left panel of Figure A.1, we compute the transition matrices between the four sectors considered
in the main text and plot the 16 elements of the backward transition matrices against the corresponding
elements of the forward transition matrices. All elements lie closely on the 45-degree line. It is not

67 Assumption 2 is almost necessary and sufficient in the sense that when the number of sectors is three, the
necessary and sufficient condition is C12 + C23 + C31 = C13 + C32 + C21. When the number of sectors is four,
the necessary and sufficient condition is Cij + Cjk + Cki = Cik + Ckj + Cji for all distinct i, j, k ∈ {1, 2, 3, 4};
and for all distinct i, j (and remaining k, ℓ), we have either Cij = Cji or Cik + Cjℓ = Ciℓ + Cjk.
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possible to test this implication empirically at the unobserved type level. Instead, we compute the
backward and forward transition matrices for observed types. Specifically, we consider four dimensions
of observed heterogeneity, as in Section 4: gender, race, education, and age, which results in 16 groups.
In the right panel of Figure A.1, we compare the matrices for all 16 groups. Again, there is a striking
similarity between the backward and forward transition matrices.

A.3 First-Order Approximation of Labor Demand Side

Suppose that type-specific sectoral wages are determined by the labor allocation and exogenous shocks:

wω
it = fωi

(
{ℓjt}j , {εjt}j

)
for i ∈ S and ω ∈ Ω. Up to a first-order approximation, we can write

dwω
it =

∑
j

∂fωi
∂ ln ℓjt

· d ln ℓjt +
∑
j

∂fωi
∂εjt

dεjt.

Assumption 1 requires that dwω
it = dwit for all ω ∈ Ω for any realizations of {ℓjt}j and {εjt}j . This in

turn requires that

dwω
it = dwit ≡

∑
j

∂fω1
i

∂ ln ℓjt
· d ln ℓjt +

∑
j

∂fω1
i

∂εjt
dεjt

for all ω ∈ Ω for a given ω1 ∈ Ω.68 Thus, we can write

dwt =


∂f

ω1
1

∂ ln ℓ1t

∂f
ω1
1

∂ ln ℓ2t
· · · ∂f

ω1
1

∂ ln ℓSt
∂f

ω1
2

∂ ln ℓ1t

∂f
ω1
2

∂ ln ℓ2t
· · · ∂f

ω1
2

∂ ln ℓSt...
... . . . ...

∂f
ω1
S

∂ ln ℓ1t

∂f
ω1
S

∂ ln ℓ2t
· · · ∂f

ω1
S

∂ ln ℓSt

 d ln ℓt +


∂f

ω1
1

∂ε1t

∂f
ω1
1

∂ε2t
· · · ∂f

ω1
1

∂εSt
∂f

ω1
2

∂ε1t

∂f
ω1
2

∂ε2t
· · · ∂f

ω1
2

∂εSt...
... . . . ...

∂f
ω1
S

∂ε1t

∂f
ω1
S

∂ε2t
· · · ∂f

ω1
S

∂εst

 dεt.

= D · d ln ℓt + E · dεt.

A.4 Intuition for the Sufficient Statistics Result

We begin by providing intuition at the micro (i.e., type) level, then show how this intuition is preserved
at the macro level when type-specific equations are aggregated.

Intuition at the Micro Level. Key equations at the micro level are (5) and (6). As discussed in the
main text, equation (5) is just an application of the envelope theorem (e.g., Milgrom and Segal, 2002).
The envelope theorem implies that changes in future optimal sector choices do not contribute to the
change in current welfare. Thus, we can evaluate the effect of changes in future sectoral wages using
workers’ sector-choice probabilities as weights. For example, equation (7) shows that the effect of a unit

68 Note that this does not necessarily imply that wω
it = wit for all ω ∈ Ω.
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change in the period-(t+ k) wage of sector j on the period-t welfare of workers in sector i is given by
the probability that these workers transition to sector j in period t+ k (after discounting the future):

∂vωit
∂Etwω

j,t+k

= βk Pr(st+k = j|st = i, ω) ≡ βk(F ω)k.

Thus, the matrix (F ω)k is—by providing information about workers’ k-period sector choices—informative
about the effect of future sectoral shocks on current welfare.

Equation (6) summarizes the labor reallocation in response to sectoral shocks, which is rewritten
here for convenience:

d ln ℓωt+1 = Bω d ln ℓωt + β
ρω (I −BωF ω)Et dv

ω
t+1. (6)

The first term captures the mechanical effect of changes in labor allocation in the previous period, which
holds under any assumption about the distribution of the idiosyncratic shocks. On the other hand, the
second term captures the response of workers’ sector choices to changes in sectoral values in period
t+ 1. In particular, it implies

∂ ln ℓωit+1

∂Etvωjt+1

∣∣∣∣
fix ℓt

= β
ρ

(
1i=j −

(
BωF ω

)
ij

)
.

To understand this equation, suppose first that i ̸= j. Then, for a given value of β
ρ , this means that the

semi-elasticity of employment in sector i with respect to the expected value of sector j is proportional
to the (i, j) element of BωF ω. Note that we have

(BωF ω)ij =
∑
k∈S

Bω
ikF

ω
kj

=
∑
k∈S

Pr(st = k|st+1 = i, ω) Pr(st+1 = j|st = k, ω).

Thus, this element can be interpreted as the probability that workers who choose st+1 = i will switch
to st+1 = j if they are allowed to choose period-(t + 1) sector again after redrawing period-(t + 1)

idiosyncratic shocks. Since their sector choice depends on the realization of idiosyncratic shocks, this
probability is non-zero. If this probability is high for a given sector pair (i, j), it means that there are
many workers who are at the margin between sectors i and j. In this case, a small change in the value
of sector j leads to a relatively larger decline in employment in sector i.

Second, consider i = j. Then for a similar reason, an increase in the value of sector i leads to a
relatively larger increase in sector i employment when many workers are at the margin between sector i
and other sectors, which is measured by 1− (BωF ω)ii.

Moving to the longer run, consider changes in the values in period t+ 1 that are known to workers
in period t+ 1− τ , τ ∈ N. To make the intuition clear, we assume that β = 1, but the intuition remains
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the same for β < 1. Then, the effect of the shock on period t labor allocation can be written as follows:

∂ ln ℓωit+1

∂Et+1−τvωjt+1

= 1
ρ

(
(I −BωF ω) + (BωF ω − (Bω)2(F ω)2) + · · ·+ ((Bω)k−1(F ω)k−1 − (Bω)k(F ω)k)

)
ij

= 1
ρ

(
1i=j −

(
(Bω)k(F ω)k

)
ij

)
.

Again, the (i, j)-element of the matrix (Bω)k(F ω)k can be interpreted as the probability that workers
who choose sector i in period t+ 1 will switch to sector j if they are allowed to choose sectors again for
periods t+ 2− τ, t+ 3− τ, · · · , t+ 1 after redrawing idiosyncratic shocks for these periods. This again
measures the k-period indifference of workers between sectors i and j, and thus provides information
on the responsiveness of workers to shocks known k-periods ahead of time.

In this sense, the steady-state transition matrices and their kth powers are—by providing information
about the indifference of workers between sectors–informative about the response of sectoral employment
to sectoral shocks. The role of the extreme-value assumption is to make this qualitative relationship
exact. As an alternative justification, we show in Appendix A.4.1 that we have the same result up to a
multiplicative constant in the limit of idiosyncratic volatility converging to zero.

Intuition at the Macro Level. At the micro level, the intuition can be formulated in terms of products
of transition matrices. Appendix A.1 demonstrates that we can aggregate type-specific equations to
derive macro-level equations, establishing the sufficient statistics result. In particular, Lemma A.3
shows that the products of transition matrices can be aggregated to two types of worker flow matrices.
This preserves the same intuition at the macro level: The matrix Fk is—by providing information
about the average worker’s k-period sector choices—informative about the effect of future sectoral
shocks on current welfare; and the matrix Fs,k is—by providing information about the average workers’
indifference between sectors—informative about the response of sectoral employment to sectoral shocks.

A.4.1 Small Idiosyncratic Shock Limit

Our goal is to show that a version of equation (6) is valid in the limit as ρ approaches zero, without any
distribution assumption on the idiosyncratic shocks. Without loss of generality, consider a two-period
version of the model in Section 2, where two periods are denoted by t and t+ 1 for notation consistent
with equation (6). To make the limit nontrivial, we modify the canonical model in two ways. First, we
perturb the sectoral values of workers in period t+1, which are written as ∆s = βEtVst+1 for notational
simplicity. Fix a positive number ε. For each pair of sectors i ̸= j ∈ S, consider a set of workers, Ωij(ε),
who have |∆i − ∆j | < ε and ∆s < min{∆i,∆j} − ε for all s ∈ S\{i, j}. Since we will take a limit
along which the importance of idiosyncratic shocks converges to zero, we assume that workers in the
set Ωij(ε) never choose a sector other than i and j. For workers in Ωij(ε), the relative value of sector i
to j is distributed as follows:69

∆ij ≡ ∆i −∆j ∼ gij(·), Gij(·).
69 We consider workers with |∆ij | < ε̄, so this is a local distribution around 0.
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Second, switching costs are given by Cij = ρ · C̃ · 1i ̸=j .70 Finally, we dispense with the distributional
assumption on the idiosyncratic shock: Idiosyncratic utility from sector i relative to sector j follows an
unknown distribution:

ρ · εit − ρ · εjt ≡ ρ · εij where εij ∼ f(·), F (·).

Within this environment, the following proposition establishes that equation (6) holds up to o(ρ) and up
to a multiplicative constant, which depends only on the shape of the distribution of idiosyncratic shocks
and the switching costs.

Proposition A.2. When gij(·) is continuous around 0 and εij has a finite first moment for all i, j ∈ S,
we have

∂ ln ℓt+1

∂Etvt+1
= const. · β

ρ · (I −BF ) + o(ρ),

where the constant term only depends on the shape of F (·) and C̃.

A.5 Single Crossing Condition

We know from Lemma 2 that, compared with the canonical model calibrated by matching the one-period
worker flow matrix, the model with worker heterogeneity implies lower values of bk at least for k = 0

and k = 1:

b0 =
(
F0 −F2

)
ss

= 1− (F2)ss

b1 =
(
F1 −F3

)
ss

= (F1)ss − (F3)ss.

Thus, k̄ ≥ 1. In Figure A.2, we plot the difference between {bk} implied by the canonical model and
those observed in the data (extrapolated using the method described in the main text). Initially, the
canonical model yields larger values of bk, but eventually it leads to smaller values compared with those
implied by the data (although not plotted, this is true for all values of k greater than 9; i.e., there is no
more crossing).

A.6 Response to a One-time Shock

Consider a one-time negative shock to a sector s ∈ S that is known to agents in period 1:

dwsτ = −∆ < 0 (A.1)

for given τ > 1. The effect of any series of negative shocks to sector s can be calculated as the sum of
the effects of such one-time negative shocks.

70 If the switching costs are fixed along the limit of ρ→ 0, no workers would change sectors over time.
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Effects on Sectoral Welfare. With worker heterogeneity, workers initially employed in sector s are
more likely to stay in sector s when the shock hits the sector. Thus, they suffer more from the one-time
shock.

Proposition A.3. Consider a one-time negative shock to sector s of the form (A.1) known to agents in pe-
riod 1. The canonical model, calibrated by matching the one-period worker flow matrix, underestimates
the negative welfare effect on workers initially employed in sector s, dvs1.

This result in turn implies that for any series of negative shocks to sector s, the canonical model
underestimates the negative welfare effect on workers initially employed in sector s, proving Proposition 3.

Effects on Sectoral Employment. The following proposition characterizes the condition under which
the canonical model overestimates the decline in employment in sector s in period t > 1.

Proposition A.4. Consider a one-time negative shock to sector s of the form (A.1) known to agents in
period 1. Under Assumption 3, there exists a decreasing function B : N → N such that the canonical
model overestimates the decline in employment in sector s in period t in response to the shock if and
only if |t− τ | ≤ B(t ∧ τ), where t ∧ τ denotes the minimum of t and τ .

When |t − τ | and/or t ∧ τ are small, the canonical model calibrated by matching the one-period
worker flow matrix overestimates the decline in employment in sector s in period t in response to the
shock, ∂ ln ℓs,t

∂ws,τ
.71

The result implies that whether the models without worker heterogeneity overestimate or underesti-
mate labor reallocation depends on the time horizon. On the one hand, as discussed in Lemma 2, the
canonical model overestimates the mobility of workers across sectors, leading to overestimation of the
decline in employment in a negatively affected sector. This intuition is what Corollary 4 describes when
|t − τ | and/or t ∧ τ are small; i.e., when the shock is recently known or when the period affected by
the shock is close to the period of interest. On the other hand, in the canonical model, workers have
relatively lower probabilities of remaining in a sector, which implies that their sector choices in a given
period do not have long-lasting impacts on their future sector choices. This aspect works in the opposite
direction to our previous intuition and can become dominant if |t − τ | and/or t ∧ τ are large enough.
For example, suppose that t is much larger than τ . A negative shock to a sector’s wage in period τ
reduces employment in the sector around that period. However, this reduced employment has only a
limited impact on employment in the sector in the distant period t in the canonical model. Figure A.3
plots the relative size of the decline in employment of sector s in period t in response to a shock to the
period τ wage predicted by the canonical model and that implied by the data. As expected, the decline is
overestimated in the canonical model for small t or τ or small |t− τ | (red cells). In short, the canonical
model tends to overestimate the short-term impact of shocks on sectoral employment but underestimates
their long-term effects. In particular, within a 7-year time horizon, the canonical model consistently
overestimates the impact of shocks on sectoral employment.

71 If w is log wage, this measures the elasticity of sectoral employment with respect to sectoral wages.
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A.7 Two-Sector Model

In this section we consider a special case of our model with two sectors, S = {1, 2}. This special case
serves two purposes. First, it highlights the restriction on the worker flow matrix series imposed by the
class of dynamic discrete choice models studied in this paper. Second, the analytical results derived in
this section will be used for proofs in Appendix D.

For simplicity, we assume that there are a finite number of worker types. The types are indexed by
i = 1, · · · , I, and the population share of type i is θi ∈ (0, 1). We denote the transition matrix of type-i
workers by

F i =

(
ᾱi αi

βi β̄i

)

where ᾱi = 1− αi and β̄i = 1− βi. We also write F k
i ≡

(
ᾱi,k αi,k

βi,k β̄i,k

)
. For example, we have

F 2
i =

(
ᾱ2
i + αiβi αi(ᾱi + β̄i)

βi(ᾱi + β̄i) β̄2i + αiβi

)
and F 3

i =

(
· αi(ᾱ

2
i + ᾱiβ̄i + β̄2i + αiβi)

βi(ᾱ
2
i + ᾱiβ̄i + β̄2i + αiβi) ·

)
.

By induction, we can obtain a general formula for the off-diagonal elements of the matrix F k
i

Lemma A.4. F k
i has the following form:

F k
i =

(
1− αif

k(ᾱi + β̄i) αif
k(ᾱi + β̄i)

βif
k(ᾱi + β̄i) 1− βif

k(ᾱi + β̄i)

)

where fk(x) = 1−(x−1)k

2−x .

The steady-state sectoral employment share of type i workers are given by

(
Pr(sector 1|type i)
Pr(sector 2|type i)

)
=

(
βi

αi+βi
αi

αi+βi

)
≡
(
β̃i
α̃i

)
,

which gives

ℓ̃i1 =
β̃iθi∑
j β̃jθj

and ℓ̃i2 =
α̃iθi∑
j α̃jθj

.

Thus, the k-period worker flow matrix is given by

Fk =


1−

∑
i β̃iθiαi,k∑

i β̃iθi

∑
i β̃iθiαi,k∑

i β̃iθi∑
i α̃iθiβi,k∑

i α̃iθi
1−

∑
i α̃iθiβi,k∑

i α̃iθi

 ≡
(
1−

∑
i xiαi,k

∑
i xiαi,k∑

i yiβi,k 1−
∑

i yiβi,k

)

where xi = β̃iθi∑
j β̃jθj

and yi = α̃iθi∑
j α̃jθj

.
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Finally, we use the results to characterize a restriction imposed on the off-diagonal elements of the
worker flow matrix series.

Proposition A.5. We have
(Fk)1,2
(Fk)2,1

=
α1x1
β1y1

for all k ≥ 1.

This proposition shows that the ratio between the two off-diagonal elements is identical for all worker
flow matrix series. Thus, if these rations are far from constant in the data, we cannot match the worker
flow matrix series observed in the data with the class of models we consider in this paper. The result in
Section 4.4 demonstrates that this is not the case.
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B. Structural Estimation Appendix

B.1 Details of Structural Estimation

To be written.

B.2 Estimation of ρ

Section 4.5 proposes a method to estimate the parameter ρ, which is based on the second equation of
Proposition 1:

d ln ℓt =
∑

s≥0,k≥0

βk+1

ρ (Fs+k −Fs+k+2)Et−s−1 dwt−s+k.

We refer to this relation as a forward-looking infinite-order MA process, because it resembles infinite-
order MA processes, but involving forward-looking variables.

We first use equations (2) and (3) to prove equation (16) under the homogeneous worker assumption.
Imposing Assumption 1 and assumptions in Lemma A.3, these equations become

dvωt = dwt + βF ωEt dv
ω
t+1

d ln ℓωt+1 = F ω d ln ℓωt + β
ρ (I − (F ω)2)Et dv

ω
t+1 (A.2)

Pre-multiplying one-period forwarded version of equation (A.2) with βF ω and taking expectation
operator Et, we have

βF ωEt d ln ℓ
ω
t+2 = β(F ω)2 d ln ℓωt+1 +

β
ρ (I − (F ω)2)βF ωEt dv

ω
t+2 (A.3)

Subtracting equation (A.3) from equation (A.2), we have

d ln ℓωt+1 = F ω d ln ℓωt + βF ω(Et d ln ℓ
ω
t+2 − F ω d ln ℓωt+1) +

β
ρ (I − (F ω)2)Et dwt+1.

Rearranging it, we obtain equation (16):

d ln ℓt = (F−1
1 + βF1) d ln ℓt+1 − βEt d ln ℓt+2 − β

ρ (F
−1
1 −F1)Et dwt+1.

We refer to this equation as a forward-looking process with order 2 because we write a period t variable
as a function of period t+ 1 and t+ 2 variables and a shock.

Now, suppose that there are N number of worker types, ω ∈ {1, 2, . . . , N}. We derive a recursive
representation of the form

d ln ℓt =

K∑
k=1

ΓkEt d ln ℓt+k +
β
ρ

K′+1∑
k=1

ΛkEt dwt+k.
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We refer to this equation as a forward-looking process with order(K,K ′). Note that the change in
aggregate labor supply can be written as

d ln ℓt+1 = Ēω[d ln ℓ
ω
t+1] = L1 d ln ℓ

1
t+1 + L2 d ln ℓ

2
t+1 + · · ·+ LN d ln ℓNt+1

where each d ln ℓωt+1 follows a forward-looking process with order w, and Lω is a diagonal matrix, whose
i-th diagonal element is given by the stationary proportion of type ω in sector i. Granger and Morris
(1976) show that the scalar-weighted sum ofN number of autoregressive processes of order 2 follows an
autoregressive process of order at most 2N . Here, we instead have diagonal-matrix-weighted sum of N
number of forward-looking process of order 2, but we can apply a modified version of their proof to show
proposition. Due to an invertibility issue, we need forward-looking process of order (4N − 2, 4N − 4)

instead of order 2N . The next subsection is devoted to the proof of Proposition A.6.

Proposition A.6. If the number of types is N , d ln ℓt has a recursive representation of the form

d ln ℓt =
4N−2∑
k=1

ΓkEt d ln ℓt+k +
β
ρ

4N−3∑
k=1

ΛkEt dwt+k.

B.2.1 Proof of Proposition A.6

We prove this proposition for the case with N = 2. The same proof can be inductively applied to show
the case with N > 2. For the case with two worker types, aggregate labor supply is given by

d ln ℓt = L1 d ln ℓ
1
t + L2 d ln ℓ

2
t (A.4)

where

d ln ℓ1t+1 − βF 1Et d ln ℓ
1
t+2 = F 1 d ln ℓ1t − β(F 1)2 d ln ℓ1t+1 +

β
ρ (I − (F 1)2)Et dwt+1 (A.5)

d ln ℓ2t+1 − βF 2Et d ln ℓ
2
t+2 = F 2 d ln ℓ2t − β(F 2)2 d ln ℓ2t+1 +

β
ρ (I − (F 2)2)Et dwt+1. (A.6)

Using equation (A.5) to cancel out d ln ℓ1t from equation (A.4), we have

L1((F
1)−1 + βF 1)L−1

1 d ln ℓt+1 − βEt d ln ℓt+2 − d ln ℓt

= L1((F
1)−1 + βF 1)(d ln ℓ1t+1 + L−1

1 L2 d ln ℓ
2
t+1)− βEt(L1 d ln ℓ

1
t+2 + L2 d ln ℓ

2
t+2)− (L1 d ln ℓ

1
t + L2 d ln ℓ

2
t )

= L1(F
1)−1

(
(I + β(F 1)2) d ln ℓ1t+1 − βF 1Et d ln ℓ

1
t+2 − F 1 d ln ℓ1t

)
+ EtΞt

= L1(F
1)−1 β

ρ (I − (F 1)2)Et dwt+1 + EtΞt
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where

Ξt = L1((F
1)−1 + βF 1)L−1

1 L2 d ln ℓ
2
t+1 − βL2 d ln ℓ

2
t+2 − L2 d ln ℓ

2
t

= L1((F
1)−1 + βF 1)L−1

1 L2 d ln ℓ
2
t+1 − βL2 d ln ℓ

2
t+2

− L2(F
2)−1

(
((I + β(F 2)2) d ln ℓ2t+1 − βF 2 d ln ℓ2t+2 −

β
ρ (I − (F 2)2)Et dwt+1

)
=
(
L1((F

1)−1 + βF 1)L−1
1 L2 − L2((F

2)−1 + βF 2)
)
d ln ℓ2t+1 +

β
ρL2((F

2)−1 − F 2)Et dwt+1.

This can be rearranged to

L1((F
1)−1 + βF 1)L−1

1 d ln ℓt+1 − βEt d ln ℓt+2 − d ln ℓt

= β
ρ

(
L1((F

1)−1 − F 1) + L2((F
2)−1 − F 2)

)
Et dwt+1 +

(
L1((F

1)−1 + βF 1)L−1
1 − L2((F

2)−1 + βF 2)L−1
2

)
L2 d ln ℓ

2
t+1.

or equivalently
yt = Ψxt

where

yt = X d ln ℓt+1 − βEt d ln ℓt+2 − d ln ℓt − β
ρYEt dwt+1

xt = d ln ℓ2t+1

X = L1((F
1)−1 + βF 1)L−1

1

Y = L1((F
1)−1 − F 1) + L2((F

2)−1 − F 2)

Ψ =
(
L1((F

1)−1 + βF 1)L−1
1 − L2((F

2)−1 + βF 2)L−1
2

)
L2.

From equation (A.6), the law of motion of xt is given by

xt = Axt+1 + BEt+1xt+2 + εt+1

where A = (F 2)−1 + βF 2, B = −βI, and εt =
β
ρCEt dwt+1 where C = −((F 2)−1 − F 2).

Lemma A.5. Suppose xt = Axt+1+Bxt+2+εt+1 ∈ RS and yt = Zxt where A,B ∈ RS×S are invertible
and Z ∈ RS×S is of rank S − 1. Then, we can always write

yt = Θ1yt+1 +Θ2yt+2 +Θ3yt+3 +Θ4yt+4 +Ω1εt+1 +Ω2εt+2 +Ω3εt+3.

for some matrices Θi = Θi(A,B,Z) and Ωi = Ωi(A,B,Z).
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Proof. Write x =

(
xt+3

xt+4

)
, then we have

yt+4 =
(
O Z

)
x ≡ M1x

yt+3 =
(
Z O

)
x ≡ M2x

yt+2 = Z(Axt+3 + Bxt+4 + εt+3)

=
(
ZA ZB

)
x + Zεt+3

≡ M3x + Zεt+3

yt+1 = Z(Axt+2 + Bxt+3 + εt+2)

= Z(A(Axt+3 + Bxt+4 + εt+3) + Bxt+3 + εt+2)

=
(
Z(A2 + B) ZAB

)
x + ZAεt+3 + Zεt+2

≡ M4x + ZAεt+3 + Zεt+2

yt = Z(Axt+1 + Bxt+2 + εt+1)

= Z(A(A(Axt+3 + Bxt+4 + εt+3) + Bxt+3 + εt+2) + B(Axt+3 + Bxt+4 + εt+3) + εt+1)

=
(
Z(A3 + AB + BA) Z(A2B + B2)

)
x + Z(A2 + B)εt+3 + ZAεt+2 + Zεt+1

≡ M5x + Z(A2 + B)εt+3 + ZAεt+2 + Zεt+1.

Note that N1 ≡ M1 is of rank S − 1, N2 ≡
(

M1

M2

)
is of rank 2(S − 1). If all rows of M3 can be written

as a linear combination of rows of N2, then we can write yt = Θ1yt+1 +Θ2yt+2. If not, N3 ≡
(

N2

M3

)
is

of rank at least 2(S − 1) + 1.72 By the same logic, we either prove the result, or N4 ≡
(

N3

M4

)
is of rank

(at least) 2S. Thus, all rows of M5 can be written as a linear combination of rows of N4. This implies
that we can find matrices Θ1, · · · ,Θ4 such that

M5 = Θ1M4 +Θ2M3 +Θ3M2 +Θ4M1.

Thus, we only need

Z(A2 + B)εt+3 + ZAεt+2 + Zεt+1 = Θ1(ZAεt+3 + Zεt+2) + Θ2(Zεt+3) + Ω1εt+1 +Ω2εt+2 +Ω3εt+3

or
Ω1 = Z, Ω2 = ZA −Θ1Z, and Ω3 = Z(A2 + B)−Θ1ZA −Θ2Z.

Lemma A.6. Ψ is non-invertible.

72 With numerical simulation, we can see that generically N3 is of rank 2(S − 1) + 1.
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Proof. Denote population share of type ω as θω, transition matrix as F ω, and stationary distribution
over sectors as πω. Define π ≡

∑
ω θ

ωπω, then we have

πTLω = θω(πω)T and (πω)TF ω = (πω)T

Thus,

πTΨ = πT
(
L1((F

1)−1+βF 1)L−1
1 −L2((F

2)−1+βF 2)L−1
2

)
L2 = (πT +βπT −πT −βπT)L2 = 0.

By combining the previous two lemmas, we can write

yt = Θ1yt+1 +Θ2Et+1yt+2 +Θ3Et+1yt+3 +Θ4Et+1yt+4 +Ω1εt+1 +Ω2Et+1εt+2 +Ω3Et+1εt+3.

where Θi = Θi(A,B,Ψ) and Ωi = Ωi(A,B,Ψ). Plugging in the definitions of yt and εt, we have

−d ln ℓt + X d ln ℓt+1 − βEt d ln ℓt+2 − β
ρYEt dwt+1 = Θ1(−d ln ℓt+1 + XEt d ln ℓt+2 − βEt d ln ℓt+3 − β

ρYEt dwt+2)

+ Θ2(−Et d ln ℓt+2 + XEt d ln ℓt+3 − βEt d ln ℓt+4 − β
ρYEt dwt+3)

+ Θ3(−Et d ln ℓt+3 + XEt d ln ℓt+4 − βEt d ln ℓt+5 − β
ρYEt dwt+4)

+ Θ4(−Et d ln ℓt+4 + XEt d ln ℓt+5 − βEt d ln ℓt+6 − β
ρYEt dwt+5)

+ β
ρΩ1CEt dwt+2 +

β
ρΩ2CEt dwt+3 +

β
ρΩ3CEt dwt+4

or equivalently

d ln ℓt = (Θ1 + X) d ln ℓt+1 + (−Θ1X +Θ2 − βI)Et d ln ℓt+2 + (βΘ1 −Θ2X +Θ3)Et d ln ℓt+3

+ (βΘ2 −Θ3X +Θ4)Et d ln ℓt+4 + (βΘ3 −Θ4X)Et d ln ℓt+5 + (βΘ4)Et d ln ℓt+6

− β
ρYEt dwt+1 + (βρΘ1Y − β

ρΩ1C)Et dwt+2 + (βρΘ2Y − β
ρΩ2C)Et dwt+3 + (βρΘ3Y − β

ρΩ3C)Et dwt+4 +
β
ρΘ4YEt dwt+5.

This can be rearranged to obatin Proposition A.6.73

d ln ℓt = Γ1 d ln ℓt+1 + Γ2Et d ln ℓt+2 + Γ3Et d ln ℓt+3 + Γ4Et d ln ℓt+4 + Γ5Et d ln ℓt+5 + Γ6Et d ln ℓt+6

+β
ρ (Λ1Et dwt+1 +Λ2Et dwt+2 +Λ3Et dwt+3 +Λ4Et dwt+4 +Λ5Et dwt+5).

B.3 Alternative Methods of Extrapolation

73 If the number of types is 3, then we need (d ln ℓt+1, · · · ,d ln ℓt+10), and with the number of types W , we
need (d ln ℓt+1, · · · ,d ln ℓt+4W−2).
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B.3.1 Pure Extrapolation

Suppose we have panel data of lengthK <∞. From the data, we can observe the conditional probability

Pr
(
st+k = sk|st = s0, st+1 = s1, · · · , st+k−1 = sk−1

)
,

for all s0, s1, . . . , sk ∈ S and k less than K. To extrapolate the probabilities with k greater than or equal
to K, we truncate the history and assume the following:

Pr
(
st+k = sk

∣∣st = s0, st+1 = s1, · · · , st+k−1 = sk−1

)
= Pr

(
st+k = sk|st+k−K+1 = sk−K+1, · · · , st+k−1 = sk−1

)
.

In short, we assume a (K − 1)-th order Markov process and calculate the probabilities accordingly. In
this sense, this extrapolation is a strict generalization of the canonical model’s extrapolation, which is
based on the assumption that the sector choice follow a first-order Markov process.

B.3.2 Extrapolation Using Retention Model

The retention model developed in Henry (1971) is based on the idea that Markov chains can be viewed
as the conjunction of two processes: One determines whether workers change sectors or not, and the
other governs which sector they choose, conditional on sector switching. Any transition matrix F can
be decomposed as follows:

F = F diag + (I − F diag)F off-diag

where

(F diag)i,j = F i,j · 1i=j

(F off-diag)i,j = Pr(st+1 = j|st = i, st+1 ̸= i) =
F i,j

1− F i,i
.

The idea of extrapolation is to treat the two parts of the process separately. For example, we can extrapolate
each element of the first part of the worker flow matrices to compute the full series of {(Fk)

diag}. Then,
we can assume that the second part remains constant for all k: (Fk)

off-diag = (F1)
off-diag for all k.

B.4 Interpretation of the Estimation Results

Denote the log wages and switching costs estimated under the normalization ρ = 1 by lnw0 and C0.
Then, the true log wages and switching costs are given by

lnw = ρ · lnw0 and C = ρ · C0.
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Thus, when C0 = 1, the consumption equivalent variation of paying switching cost is implicitly given
by

lnw(1− CEV)
1− β

=
lnw

1− β
− ρ,

which gives
CEV = 1− exp(−ρ(1− β)) = 3.25%.

Likewise, our estimate of Fréchet parameter is 0.825, which means that the consumption equivalent
variation corresponding to one standard deviation lower realization of the idiosyncratic shock is given
by

lnw(1− CEV)
1− β

=
lnw

1− β
− 2 · πρ√

6

where we multiply two because it is the difference between two realizations of idiosyncratic shocks.
This gives

CEV = 1− exp(−2πρ(1− β)√
6

) = 8.12%.

In contrast, ACM assume linear utility function, so the consumption equivalent variation can be
computed as

w(1− CEVACM)

1− β
=

w

1− β
− CACM

Thus, we have (given their normalization of average wages to one)

CEVACM =
(1− β)CACM

w
= 19.7%

where we use the number in Panel IV of Table 3, which is used in their counterfactual exercises. Likewise,
their estimate of Fréchet parameter is 1.884, which means that the consumption equivalent variation
corresponding to one standard deviation lower realization of the idiosyncratic shock is given by

w(1− CEVACM)

1− β
=

w

1− β
− 2 · πρACM√

6

which gives
CEVACM =

2πρACM(1− β)

w
√
6

= 14.5%.
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C. Empirical Applications Appendix

C.1 Application 1: Hypothetical Trade Liberalization

Closing the Model. We consider the first version of the model in ACM, in which all sectors produce
tradable output, and world prices are exogenously determined. Each sector s has a constant elasticity of
substitution (CES) production function

yst = ψs(αs(Ls
t )

ρs + (1− αs)(Ks
t )

ρs)
1
ρs

with fixed sector-specific capital Ks
t = 1 normalized to one. The parameters should satisfy αs ∈

(0, 1), ρs < 1, and ψs > 0. Then, the sectoral wage is given by the marginal productivity of labor

ws
t = pstα

sψs(Ls
t )

ρs−1(αs(Ls
t )

ρs + (1− αs))
1−ρs

ρs

where pst is the domestic price of the sector-s good. Without loss of generality, we normalize the
domestic prices to one in the initial steady state prior to the shock. Finally, workers have identical
Cobb-Douglas with shares µs for sector s.

We follow the calibration strategy of ACM (except for the number of sectors). We set the values of
αs, ρs, and ψs to minimize the Euclidean distance between the model-implied values of sectoral wages,
sectoral labor shares, and sector share of GDP; and the values computed from the data. The values of
µs are calibrated from consumption shares from the Bureau of Labor Statistics (BLS).

C.2 Application 2: The China Shock

C.2.1 CDP’s Model Extended with Worker Heterogeneity

In this section and the next, we closely follow the modeling decisions and notation of CDP. See CDP for
more details and equilibrium characterization. CDP consider a world with N locations (indexed by n or
i) and J sectors (indexed by j or k), where sector j = 0 represents non-employment. Time is discrete
and indexed by t ∈ N0. In each location-sector combination, (n, j), there is a competitive local labor
market.

Heterogeneous Workers. In each location n, there is a continuum of forward-looking workers who
optimally decide which sector to supply their labor for each period. The heterogeneity of workers are
indexed by ω. Similar to equation (1), the value of a worker of type ω who is employed in sector j at
period t is given by

V n,ω
jt = U(cn,ωjt ) + max

k
{βEtV

n,ω
kt+1 − Cn,ω

jk + ρ · εkt}
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where cn,ωjt =
∏

k(c
k,n,ω
jt )α

k is a Cobb-Douglas aggregator across local sectoral goods, with the corre-
sponding price index Pn

t =
∏

j(P
nk
t /αk)α

k . Following CDP, we assume U(c) = log c.
Households employed in a local labor market (n, j) earn a nominal wage of wnj

t , consuming
cn,ωjt = c̃nj,ω ·wnj

t /P
n
t units of consumption aggregate where c̃nj,ω is a type-specific shifter representing

non-pecuniary sectoral preferences. Non-employed household (who chooses sector j = 0) consume
cn,ω0t = bn,ω units of consumption aggregate in terms of home production. The ex-ante value and sector
choice probabilities are characterized as in equations (2) and (3):

vn,ωjt = U(cn,ωjt ) + ρ ln
∑
k

(exp(βEtv
n,ω
kt+1)/ exp(C

n,ω
jk ))1/ρ (A.7)

Fn,ω
jkt =

(exp(βEtv
n,ω
kt+1)/ exp(C

n,ω
jk ))1/ρ∑

k′(exp(βEtv
n,ω
k′t+1)/ exp(C

n,ω
jk′ ))

1/ρ
. (A.8)

Thus, the law of motion of sectoral labor supply of type ω workers in region n is

ℓn,ωkt+1 =
∑
j

Fn,ω
jkt ℓ

n,ω
jt . (A.9)

Finally, let Lnj
t =

∑
ω ℓ

n,ω
jt+1 be the total labor supply to local labor market (n, j). In this environment,

Assumption 1 holds, and we implicitly maintain Assumption 2 (with n superscript) as well.

Production. For each sector j, there is a continuum of different varieties of intermediate goods. Each
region-sector combination draws a variety-specific productivity znj , which follows a Fréchet distribution
with the dispersion parameter θj . Without loss, each variety is indexed by zj = (z1j , z2j , . . . , zNj). In
each local labor market, (n, j), there is a continuum of perfectly competitive firms producing variety
zj . They have a Cobb-Douglas technology combining labor (l), structures (h), and local sectoral goods
from all sectors (M ):

qnjt = znj(Anj
t (hnjt )ξ

n
(lnjt )1−ξn)γ

nj
∏
k

(Mnj,nk
t )γ

nj,nk

where Anj
t is a sector-region specific productivity. Thus, the unit cost of producing this intermediate

good is
xnjt

znj(Anj
t )γnj

where xnjt = Bnj((rnjt )ξ
n
(wnj

t )1−ξn)γ
nj
∏
k

(Pnk
t )γ

nj,nk (A.10)

where Bnj is a constant, rnjt is the rental price of structures, and Pnk
t is the price of the local sector-k

goods.
Local sectoral goods are produced from intermediate goods in a competitive way, which are then

used as final consumption and as materials for the production of intermediate varieties. The technology
is given by:

Qnj
t =

(∫
(q̃njt (zj))1−1/ηnj

dϕj(zj)

)ηnj/(ηnj−1)
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where q̃njt (zj) is the quantity of variety zj used in the production, and ϕj(·) is the joint distribution of
the vector zj . The intermediate good of variety zj is sourced from a country with the minimum price,
taking into account bilateral iceberg-type trade costs (κ). The minimized price is then given by

pnjt (zj) = min
i

{
κnj,ijt xijt

zij(Aij
t )

γij

}
.

Thus, the price of the local sectoral good is

Pnj
t = Γ

(
1 + θj − ηnj

θj

)
·

(∑
i

(xijt κ
nj,ij
t )−θj (Aij

t )
θjγij

)−1/θj

(A.11)

Finally, the share of total expenditure in local market (n, j) on goods from market (i, j) is given by

πnj,ijt =
(xijt κ

nj,ij
t )−θj (Aij

t )
θjγij∑

i′(x
i′j
t κnj,i

′j
t )−θj (Ai′j

t )θjγi′j
(A.12)

Structure Rentier. There is a continuum of structure rentiers in each region n. The own the local

structures of fixed amount {Hnj}j and rent them to local firms. The received rents are aggregated at
the global-level, and rentiers in each region n receive a constant share ιn of the total global revenue:

ιnχt where χt =
∑
i

∑
k

rikt H
ik.

Market Clearing. Market clearing for goods market, labor market, and structure market is given by

Xnj
t =

∑
k

γnk,nj
∑
i

πik,nkt Xik
t + αj

(∑
k

wnk
t Lnk

t + ιnχt

)
(A.13)

wnj
t L

nj
t = γnj(1− ξn)

∑
i

πij,njt Xij
t (A.14)

rnjt H
nj = γnjξn

∑
i

πij,njt Xij
t (A.15)

where Xnj
t is the total expenditure on sector j good in region n.

Equilibrium. Following CDP, we group exogenous state variables of the economy into time-varying
ones and time-invariant ones:

Θt ≡ ({Anj
t }n,j , {κnj,ijt }n,i,j) and Θ̄ ≡ ({Cn,ω

jk }j,k,n,ω, {Hnj}n,j , {c̃nj,ω}n,j,ω, {bn,ω}n,ω).

Given the initial distribution of labor and the path of exogenous state variables ({ℓn,ωj0 }j,n,ω, {Θt}∞t=0, Θ̄),
a sequential competitive equilibrium corresponds to a sequence of {Lt, F t, vt, xt, Pt, πt, Xt, wt, rt}∞t=0,
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where Lt = {ℓn,ωjt }j,n,ω, F t = {Fn,ω
jkt }j,k,n,ω, vt = {vn,ωjt }j,n,ω, xt = {xnjt }n,j , Pt = {Pn,j

t }n,j ,
πt = {πij,njt }i,j,n, Xt = {Xnj

t }n,j , wt = {wnj
t }n,j , and rt = {rnjt }n,j , such that households opti-

mally make sector choice decisions, as described in (A.7)–(A.9); firms maximize their profits, as
described in (A.10)–(A.12); all markets clear, as described in (A.13)–(A.15). A stationary equilibrium
is a sequential competitive equilibrium such that {Lt, F t, vt, xt, Pt, πt, Xt, wt, rt} is time-invariant.

C.2.2 Dynamic Hat Algebra with Worker Heterogeneity

Following CDP, we solve for the equilibrium in time differences. We denote by ẏt+1 ≡ (y1t+1/y
1
t , y

2
t+1/y

2
t , · · · )

the proportional change in any scalar or vector. The following proposition corresponds to Propositions
1 and 2 of CDP, but allowing for worker heterogeneity.

Proposition A.7 (Solving the model). Suppose that the economy is initially starting from a stationary
equilibrium at period t = 0. Up to the first-order approximation around a stationary equilibrium,
given a sequence of changes in exogenous state variables, {Θ̇t}∞t=1 satisfying limt→∞ Θ̇t = 1, known to
agents in period t = 1, the solution to the sequential equilibrium in time differences does not require
information on the level of the exogenous state variables {Θt}∞t=0 or Θ̄, and solves the following system
of equations:

vnjt = vnj0 +
∑
k

βkFk ln

(
ẇn
t+k

Ṗn
t+k

·
ẇn
t+k−1

Ṗn
t+k−1

· · · · · ẇ
n
1

Ṗn
1

)

Lnj
t = Lnj

0 · exp

( t−2∑
s=0

∞∑
k=0

βk+1

ρ (Fn
s+k −Fn

s+k+2) ln

(
ẇn
t−s+k

Ṗn
t−s+k

·
ẇn
t−s+k−1

Ṗn
t−s+k−1

· · · · · ẇ
n
1

Ṗn
1

))
j


ẋnjt+1 = (L̇nj

t+1)
γnjξn(ẇnj

t+1)
γnj
∏
k

(Ṗnk
t+1)

γnj,nk

Ṗnj
t+1 =

(∑
i

πnj,ijt (ẋijt+1κ̇
nj,ij
t+1 )−θj (Ȧij

t+1)
θjγij

)−1/θj

πnj,ijt+1 = πnj,ijt

(
ẋijt+1κ̇

nj,ij
t+1

Ṗnj
t+1

)−θj

(Ȧij
t+1)

θjγij

Xnj
t+1 =

∑
k

γnk,nj
∑
i

πik,nkt+1 Xik
t+1 + αj

(∑
k

ẇnk
t+1L̇

nk
t+1w

nk
t Lnk

t + ιnχt+1

)
ẇnj
t+1L̇

nj
t+1w

nj
t L

nj
t = γnj(1− ξn)

∑
i

πij,njt+1 X
ij
t+1

where χt+1 =
∑

i

∑
k

ξi

1−ξi
ẇik
t+1L̇

ik
t+1w

ik
t L

ik
t and ẇn

t is a vector whose jth element is ẇnj
t .

Proof. The last five equations write the equilibrium conditions for the static multicountry interregional
trade model in time differences. See CDP for a proof of this representation. Note that the real wage in
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period t can be written as
wnj
t

Pn
t

=
ẇnj
t

Ṗn
t

·
ẇnj
t−1

Ṗn
t−1

· · · · · ẇ
nj
1

Ṗn
1

wnj
0

Pn
0

.

Since the economy is initially starting from a stationary equilibrium at period t = 0, we have

d ln

(
wnj
t

Pn
t

)
= ln

(
ẇnj
t

Ṗn
t

·
ẇnj
t−1

Ṗn
t−1

· · · · · ẇ
nj
1

Ṗn
1

)
. (A.16)

Note that with shocks known to agent at period t = 1, the sufficient statistics results of Proposition 1
can be simplified to

dvt =
∞∑
k=0

βkFk dwt+k

d ln ℓt =

t−2∑
s=0

∞∑
k=0

βk+1

ρ (Fs+k −Fs+k+2) dwt−s+k.

Plugging expression (A.16) into these equations gives the first two equations.

In the baseline economy, the path of exogenous state variables are given by {Θt}∞t=0 and Θ̄. In
the counterfactual economy, we consider changes in exogenous state variables. We denote the new
path by {Θ′

t}∞t=0. We assume that agents learn about these changes at period t = 1. This proposition
corresponds to Proposition 3 of CDP, but allowing for worker heterogeneity. It shows how to solve for the
counterfactual changes in endogenous variables in time differences and relative to a baseline economy
without the need to estimate the level of the exogenous state variables. We denote by ŷt+1 ≡ ẏ′t+1/ẏt+1

the ratio of time differences between the counterfactual equilibrium and the baseline equilibrium.

Proposition A.8 (Solving for Counterfactuals). Suppose that the economy is initially starting from
a stationary equilibrium at period t = 0. Up to the first-order approximation around a stationary
equilibrium, given a baseline equilibrium, {Lt, πt, Xt}∞t=0, and a counterfactual sequence of changes
in exogenous state variables, {Θ̂t}∞t=1 satisfying limt→∞ Θ̂t = 1, known to agents in period t = 1, the
solution to the counterfactual sequential equilibrium in time differences does not require information on
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the level of the exogenous state variables {Θt}∞t=0 or Θ̄, and solves the following system of equations:

v′njt = vnjt +
∑
k

βkFk ln

(
ŵn
t+k

P̂n
t+k

·
ŵn
t+k−1

P̂n
t+k−1

· · · · · ŵ
n
1

P̂n
1

)

L′nj
t = Lnj

t · exp

( t−2∑
s=0

∞∑
k=0

βk+1

ρ (Fn
s+k −Fn

s+k+2) ln

(
ŵn
t−s+k

P̂n
t−s+k

·
ŵn
t−s+k−1

P̂n
t−s+k−1

· · · · · ŵ
n
1

P̂n
1

))
j


x̂njt+1 = (L̂nj

t+1)
γnjξn(ŵnj

t+1)
γnj
∏
k

(P̂nk
t+1)

γnj,nk

P̂nj
t+1 =

(∑
i

π′nj,ijt π̇nj,ijt+1 (x̂ijt+1κ̂
nj,ij
t+1 )−θj (Âij

t+1)
θjγij

)−1/θj

π′nj,ijt+1 = π′nj,ijt π̇′nj,ijt+1

(
x̂ijt+1κ̂

nj,ij
t+1

P̂nj
t+1

)−θj

(Âij
t+1)

θjγij

X ′nj
t+1 =

∑
k

γnk,nj
∑
i

π′ik,nkt+1 X ′ik
t+1 + αj

(∑
k

ŵnk
t+1L̂

nk
t+1w

′nk
t L′nk

t ẇnk
t+1L̇

nk
t+1 + ιnχ′

t+1

)

ŵnj
t+1L̂

nj
t+1 =

γnj(1− ξn)

w′nk
t L′nk

t ẇnk
t+1L̇

nk
t+1

∑
i

π′ij,njt+1 X ′ij
t+1

where χ′
t+1 =

∑
i

∑
k

ξi

1−ξi
ŵik
t+1L̂

ik
t+1w

′ik
t L′ik

t ẇik
t+1L̇

ik
t+1 and ŵn

t is a vector whose jth element is ŵnj
t .

C.2.3 Calibration of the Model

There are 87 regions, 50 US states and 37 other countries, and 4 sectors. The model has the following
parameters: value added shares ({γnj}n,j), the share of structures in value added ({ξn}n), the input-
output coefficients ({γnk,nj}n,k,j), rentier shares ({ιn}n), consumption Cobb-Douglas shares ({αj}j),
the discount factor (β), the sectoral trade elasticities ({θj}j), and the inverse sector-choice elasticity
(ρ).74 The year 2000 corresponds to the period t = 0 of the model. To apply dynamic hat algebra, we
use data on bilateral trade flows πt and value added {wnj

t L
nj
t + rnjt H

nj}n,j from year 2000 to 2007. The
data comes from the World Input-Output Database (WIOD), the 2002 Commodity Flow Survey (CFS),
and regional employment data from the Bureau of Economic Analysis (BEA). See CDP for more details.
Finally, we need to identify the magnitude of the China shock.

Parameters. Following CDP, value added shares ({γnj}n,j), the share of structures in value added
({ξn}n), and the input-output coefficients ({γnk,nj}n,k,j) are constructed from the BEA and the WIOD
data. Rentier shares ({ιn}n), consumption Cobb-Douglas shares ({αj}j) are calculated from the
constructed trade and production data. We set the quarterly discount factor to β = 0.99. We use
the sectoral trade elasticities from Dix-Carneiro et al. (2023), θj = 4. Finally, we obtain the inverse
migration elasticity at a quarterly frequency from the estimate in Section 4.5. In particular, the value of

74 Without loss of generality we can ignore {ηnj}n,j as they only appear in the constant term of the price index.

69



rho at a quarterly frequency is calibrated such that both the yearly and quarterly analysis deliver the same
elasticity of labor with respect to the wage changes. Up to a first-order approximation, the response of
labor to a permanent change in wage wt = w known to households at t = 1 is given by

d ln ℓt
quarterly =

t−2∑
s=0

∞∑
k=0

(βquarterly)k+1

ρquarterly (Fquarterly
s+k −Fquarterly

s+k+2 ) dw

d ln ℓt
yearly =

t−2∑
s=0

∞∑
k=0

(βyearly)k+1

ρyearly (Fyearly
s+k −Fyearly

s+k+2) dw.

We calculate the value of ρquarterly that minimizes the difference between d ln ℓ
yearly
2

dw
and d ln ℓ

quarterly
2

dw
:

∥∥∥∥∥
∞∑
k=0

(βquarterly)k+1

ρquarterly (Fquarterly
k −Fquarterly

k+2 )−
∞∑
k=0

(βyearly)k+1

ρyearly (Fyearly
k −Fyearly

k+2 )

∥∥∥∥∥
2

.

The resulting value is ρ = 1.0011. Figure A.14a plots the elements of d ln ℓ
yearly
2

dw
against the correponding

elements of d ln ℓ
quarterly
2

dw
. In Figure A.14b, we also compare the (normalized) sectoral value changes at

the yearly and quarterly frequency:

(1− βquarterly) dv0 = (1− βquarterly)
∞∑
k=0

(βquarterly)kFquarterly
k dw

(1− βyearly) dv0 = (1− βyearly)
∞∑
k=0

(βyearly)kFyearly
k dw.

China Shock. Following CDP, we first compute the predicted increases in US imports from China
between 2000 and 2007 using the increases in imports from China of other eight advanced economies
during the same period as an instrument. Given this plausibly China-driven increase in imports, we
calibrate the increase in China’s manufacturing TFP, ÂChina,manufacturing

t , from 2000 to 2007 such that the
structural model the increase in imports from China that exactly matches the predicted imports increase.
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D. Omitted Proofs

Proof of Equations (5) and (6). Taking the first-order approximations to equations (2) and (4) and the
definition of Fijt, we have

dvit = dwit + ρ
∑
j

(
exp(βEtvjt+1)/ exp(Cij)

)1/ρ
∑

k

(
exp(βEtvkt+1)/ exp(Cik)

)1/ρ
∣∣∣∣∣∣∣
steady state

· β
ρEt dvjt+1

= dwit + β
∑
j

FijEt dvjt+1 (A.17)

d ln ℓjt+1 =
∑
i

Fijtℓit
ℓjt+1

∣∣∣∣
steady state
· (d ln ℓit + d lnFijt)

=
∑
i

Bji · (d ln ℓit + d lnFijt) (A.18)

d lnFijt =
β
ρ

(
Et dvjt+1 −

∑
k

FikEt dvkt+1

)
. (A.19)

Plugging equation (A.19) into equation (A.18), we have

d ln ℓjt+1 =
∑
i

Bji d ln ℓit +
β
ρ

∑
i

Bji ·

(
Et dvjt+1 −

∑
k

FikEt dvkt+1

)

=
∑
i

Bji d ln ℓit +
β
ρ ·

(
Et dvjt+1 −

∑
i

Bji

∑
k

FikEt dvkt+1

)
. (A.20)

With vector notation, equations (A.17) and (A.20) become equations (5) and (6).

Proof of Lemma 1. Equation (5) relates dvωt with dvωt+1. Solving this equation forward, we can write dvωt

as a linear combination of the expected value of a sequence (dwω
t ,dw

ω
t+1, dw

ω
t+2, · · · ),

dvωt =
∑
k≥0

(βF ω)kEt dw
ω
t+k.

Plugging this result into equation (6), we obtain a formula that relates d ln ℓωt+1 with d ln ℓωt ,

d ln ℓωt+1 = Bω d ln ℓωt + β
ρ (I −BωF ω)

∑
k≥0

(βF ω)kEt dw
ω
t+k+1.

Solving this equation backward, we can write d ln ℓωt as a linear combination of the expected value of a
two-sided sequence (· · · ,dwω

t−1,dw
ω
t ,dw

ω
t+1, · · · ),

d ln ℓωt = β
ρ

∑
s≥0

(Bω)s(I −BωF ω)

(∑
k≥0

(βF ω)kEt−s−1 dw
ω
t−s+k

)
.
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Proof of Lemma A.3. Write θj = exp(βρEv
′
j) and kij = exp(1ρCij), then

Fij =
θj/kij
φi

where φi =
∑
k

θk/kik.

First, assume

kij =

{
ki · k̃j if i ̸= j

1 if i = j
.

Then, we have
φi =

∑
k

θj/kik = θi −
θi

kik̃i
+

1

ki

∑
k

θk

k̃k
(A.21)

and

ℓi =
∑
k

ℓkFki =
∑
k

ℓk
θi/kki
φk

= ℓi
θi
φi

+ ℓi
θi
φi

1

kik̃i
+
θi

k̃i

∑
k

ℓk
φkkk

hence, rearranging,

ℓi =

(
1− θi

φi

(
1− 1

kik̃i

))−1 θi

k̃i

∑
k

ℓk
φkkk

(A.21)
=

φiθiki

k̃i

∑
k

ℓk
φkkk∑
k

θk
k̃k

.

Thus, we can show that ℓiFij = ℓjFji from

ℓiFij

ℓjFji
=

φiθiki
k̃i

· θj/kij
φi

φjθjkj
k̃j

· θi/kji
φj

= 1.

second, assume instead kij = kji for all j, i. Under this assumption, we can easily check that

ℓi =
θiφi∑
k θkφk

solves the equation
ℓi =

∑
k

ℓkFki, ∀i.

Thus, we again have
ℓiFij

ℓjFji
=
θiφi

θj/kij
φi

θjφj
θi/kji
φj

= 1.
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Proof of Lemma 2. It is without loss to assume that there are two sectors. From Lemma A.4, we have

(Fk)11 = 1−
∑

ω β̃ωθωαωf
k(2− αω − βω)∑

ω β̃ωθω(
(F1)

k
)
11

= 1−
∑

ω β̃ωθωαω∑
ω β̃ωθω

fk
(
2−

∑
ω β̃ωθωαω∑
ω β̃ωθω

−
∑

ω α̃ωθωβω∑
ω α̃ωθω

)
.

Thus, we need to show that∑
ω β̃ωθωαωf̃

k(αω + βω)∑
ω β̃ωθω

<

∑
ω β̃ωθωαω∑
ω β̃ωθω

f̃k
(∑

ω β̃ωθωαω∑
ω β̃ωθω

+

∑
ω α̃ωθωβω∑
ω α̃ωθω

)

where f̃k(x) = fk(2− x), or equivalently∑
ω

αωβω

αω+βω
θωf̃

k(αω + βω)∑
ω β̃ωθω

<

∑
ω

αωβω

αω+βω
θω∑

ω β̃ωθω
f̃k

( ∑
ω

αωβω

αω+βω
θω(∑

ω β̃ωθω
)
· (
∑

ω α̃ωθω)

)

Define gk(x) = x · f̃k(x), then this becomes

∑
ω α̃wβ̃wθwg

k(αw + βw)(∑
ω β̃ωθω

)
· (
∑

ω α̃ωθω)
< gk

( ∑
ω α̃wβ̃wθω(αw + βw)(∑
ω β̃ωθω

)
· (
∑

ω α̃ωθω)

)
.

Define, τω = α̃ωβ̃ωθω

(
∑

ω β̃ωθω)·(
∑

ω α̃ωθω)
, then κ ≡

∑
ω τw ∈ (0, 1). We can inductively show that gk(x) ∈ [0, 1]

is weakly increasing and weakly concave for x ∈ [0, 1]. Thus,

gk

( ∑
ω α̃wβ̃wθω(αw + βw)(∑
ω β̃ωθω

)
· (
∑

ω α̃ωθω)

)
= gk

(∑
ω

τw(αω + βω)

)

= gk

(
κ
∑
ω

τω
κ
(αw + βw)

)

≥ κgk

(∑
ω

τω
κ
(αw + βw)

)
> κ

∑
ω

τω
κ
gk(αw + βw)

=

∑
ω α̃wβ̃wθwg

k(αw + βw)(∑
ω β̃ωθω

)
· (
∑

ω α̃ωθω)
.

Proof of Proposition 3. We prove a more general result in Proposition A.3.
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Proof of Proposition 4. For t ≥ 2,

d ln ℓt =
∑

s≥0,k≥0

βk+1

ρ (Fs+k −Fs+k+2)Et−s−1 dwt−s+k

=
t−2∑
s=0

∑
k≥0

βk+1

ρ (Fs+k −Fs+k+2) dwt−s+k

=
∑
k≥0

βk+1

ρ (Fk + Fk+1 −Ft+k−1 −Ft+k) dw

where dw = (0, · · · , 0,
sth«
−∆, 0, · · · , 0). Thus, we can write

|d ln ℓst| = ∆ ·
∑
k≥0

βk+1

ρ

(
t−2∑
s=0

bs+k

)
.

This gives

|d ln ℓst+1| − | d ln ℓst| = ∆ ·
∑
k≥0

βk+1

ρ bk+t−1

Under the single-crossing condition of Assumption 3, if this term is higher in the heterogeneous-worker
model, then |d ln ℓst+2|− | d ln ℓst+1| is also higher in the heterogeneous-worker model. This means that
there exists a cutoff t̄ ∈ N ∪ {∞} such that the canonical model calibrated by matching the one-period
worker flow matrix overestimates the decline in employment of sector s in period t if and only if
1 < t ≤ t̄. Note that

b0 + · · ·+ bt−2 = (I + F1 −Ft−1 −Ft)ss

is always higher in the canonical model. Thus, |d ln ℓst| is always higher in the canonical model if β is
sufficiently close to zero. In that case, t̄ = ∞ is possible. On the other hand, for t = 2, we have

| d ln ℓs2| = ∆ ·
∑
k≥0

βk+1

ρ (Fk −Fk+2)s,s

= ∆ · β
ρ

(
(I −F2) + β(F1 −F3) + β2(F2 −F4) + · · ·

)
s,s

= ∆ · β
ρ

(
I + βF1 − (1− β2)F2 − β(1− β2)F3 − · · ·

)
s,s
,

which is always higher in the canonical model. Thus, t̄ ̸= 1.

Proof of Proposition A.3. We can write the absolute changes in the value as

|dvs1| = βτ−1(Fτ−1)s,s∆ ≥ βτ−1
(
(F1)

τ−1
)
s,s
∆ =

∣∣∣ dvs1∣∣canonical

∣∣∣.
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Proof of Proposition A.4. For t ≥ 2,

d ln ℓt =
∑

s≥0,k≥0

βk+1

ρ (Fs+k −Fs+k+2)Et−s−1 dwt−s+k

=
t−2∑
s=0

∑
k≥0

βk+1

ρ (Fs+k −Fs+k+2) dwt−s+k

= β
ρ (Ft−2 −Ft) dw2

+
(
β
ρ (Ft−3 −Ft−1) +

β2

ρ (Ft−1 −Ft+1)
)
dw3

+
(
β
ρ (Ft−4 −Ft−2) +

β2

ρ (Ft−2 −Ft) +
β3

ρ (Ft −Ft+2)
)
dw4

+ · · ·

+
(
β
ρ (F0 −F2) + · · ·+ βt−1

ρ (F2t−4 −F2t−2)
)
dwt

+
(
β2

ρ (F1 −F3) + · · ·+ βt

ρ (F2t−3 −F2t−1)
)
dwt+1

+ · · ·

≡
∞∑
τ=2

Aτ,t dwτ

where the impulse response functions are given by

Aτ,t =


t−2∑
s=0

βs+τ−t+1

ρ (F2s+τ−t −F2s+τ−t+2) if τ ≥ t

τ−2∑
s=0

βs+1

ρ (F2s+t−τ −F2s+t−τ+2) if t > τ .

Thus, the s-th diagonal element of Aτ,t is a weighted sum of {b2s+|t−τ |}s=0,...,t∧τ−2 where more weights
are given to those with small s. Thus, under Assumption 3, the s-th diagonal element of Aτ,t is higher
in the canonical model when |t − τ | and/or t ∧ τ are small. In particular, for given t ∧ τ , we can find
B ∈ N such that the s-th diagonal element of Aτ,t is higher in the canonical model when |t − τ | ≤ B.
We can show that B ≥ 1:

(At,t)ss =
t−2∑
s=0

βs+1

ρ b2s

= β
ρ − β(1−β)

ρ (F2)ss − β2(1−β)
ρ (F4)ss − · · · − βt−2(1−β)

ρ (F2t−4)ss − βm

ρ (F2t−2)ss,

(At,t+1)ss =
t−2∑
s=0

βs+2

ρ b2s+1

= β2

ρ (F1)ss − β2(1−β)
ρ (F3)ss − β3(1−β)

ρ (F5)ss − · · · − βt−1(1−β)
ρ (F2t−3)ss − βt

ρ (F2t−1)ss,
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and

(At+1,t)ss =
t−2∑
s=0

βs+1

ρ b2s+1

= β
ρ (F1)ss − β(1−β)

ρ (F3)ss − β2(1−β)
ρ (F5)ss − · · · − βt−2(1−β)

ρ (F2t−3)ss − βm

ρ (F2t−1)ss.

Thus, by Lemma 2, we can see that (Aτ,t)ss is higher in the canonical model if |t− τ | ≤ 1. This proves
that B maps N into itself.

Proof of Lemma A.1. The second equation holds by construction. For the first equation, we have

[Ēω d ln ℓωt+1]i =
∑
ω

ℓ̃ωi d ln ℓωit+1 =

∑
ω ℓ

ω
i d ln ℓωit+1

ℓi
=

∑
ω dℓωit+1

ℓi
=

dℓit+1

ℓi
= d ln ℓit+1.

For the remaining equations, fix time t, we then have

[
Ēω[(F

ω)k]
]
ij
=
∑
ω

ℓ̃ωi
[
(F ω)k

]
ij

=
∑
ω

Pr(ω|st = i) · Pr(st = i, st+k = j|st = i, ω)

=
∑
ω

Pr(st = i, st+k = j, ω|st = i)

= Pr(st = i, st+k = j|st = i)

= (Fk)ij .

Again fix time t, and define a random variable τ(t,m) as follows:

τ(t,m) ≡ min{τ > t : sτ = st−m}

which is well-defined based on two assumptions we begin with.

[
Ēω[(B

ω)m(F ω)k]
]
ij
=
∑
ω

ℓ̃ωi
∑
h

[(Bω)m]ih ·
[
(F ω)k

]
hj

=
∑
ω

Pr(ω|st = i)
∑
h

Pr(st−m = h, st = i|st = i, ω) · Pr(sτ(t,m)+k = j|st−m = h, st = i, ω)

=
∑
ω

∑
h

Pr(st−m = h, st = i, sτ(t,m)+k = j, ω|st = i)

=
∑
ω

Pr(st = i, sτ(t,m)+k = j, ω|st = i)

= Pr(st = i, sτ(t,m)+k = j|st = i)
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Proof of Lemma A.2. We have

ℓi ·
[
Ēω

[
(Bω)m(F ω)k

]]
ij
=
∑
ω

ℓωi
∑
h

[(Bω)m]ih ·
[
(F ω)k

]
hj

=
∑
ω

∑
h

ℓωh [(F
ω)m]hi ·

[
(F ω)k

]
hj

=
∑
ω

∑
h

ℓωj [(F
ω)m]hi ·

[
(Bω)k

]
jh

= ℓj
[
Ēω

(
Bω)k(F ω)m

]]
ji
.

Thus,
(LHS)ij = ℓi ·

[
Ēω

[
(Bω)m(F ω)k

]]
ij
= ℓj

[
Ēω

(
Bω)k(F ω)m

]]
ji
= (RHS)ij

Proof of Proposition A.2. Consider shifts in the distributions of ∆i and ∆j by ρ · d∆i and ρ · d∆j units,
respectively. Denote the share of workers working in sector s as Ls. The following lemma represents
levels and changes of sector choice probabilities in terms of d∆i and d∆j .

Lemma A.7. When gij(·) is continuous around 0 and εij has a finite first moment for all i, j ∈ S, we
have

Fij =
ρgij(0)F1

Li
+ o(ρ)

dFijt =

(
ρgij(0)F2

Li
+ o(ρ)

)
· (d∆j − d∆i)

d lnFijt = (F + o(1)) · (d∆j − d∆i)

Fii = 1 + o(1)

dFiit = F ·

(
d∆i −

∑
j

Fij d∆j

)
+ o(ρ)

d lnFiit = F ·

(
d∆i −

∑
j

Fij d∆j

)
+ o(1)

where the constants F1,F2 and F only depend on F (·) and C̃.
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Plugging the final equation into equation (A.18), we have

d ln ℓi =
∑
j

Bij d lnFjit

= Fii d lnFiit +
∑
j ̸=i

Bij d lnFjit

= dFiit +
∑
j ̸=i

Bij d lnFjit

= F ·

(
d∆i −

∑
j

Fij d∆j

)
+
∑
j ̸=i

Tij · F · (d∆i − d∆j) + o(ρ)

= F ·

(
2 d∆i −

∑
j

Fij d∆j −
∑
j

Tij d∆j

)
+ o(ρ)

Lemma A.8. We have 2I − F −B = I −BF + o(ρ).

Proof. This directly follows from (I − B)(I − F ) = o(ρ), which in turn comes from the fact that all
the elements of both matrices I − F and I −B are proportional to ρ.

Thus, we obtain

d ln ℓ = F · (2I − F −B) d∆ + o(ρ)

= F · β
ρ (I −BF )Et dvt+1 + o(ρ)

Proof of Lemma A.7. We start with the following lemma.

Lemma A.9 (Conditional Distribution). Suppose that in the steady state, shares ℓi and ℓj of workers in
Ωij(ε) are working in sectors i and j, respectively, and that they have

∆ij |in sector i, Ωij(ε) ∼ giij(·), Gi
ij(·) and ∆ij |in sector j,Ωij(ε) ∼ gjij(·), G

j
ij(·).

Then, these conditional distributions satisfy

giij(x)ℓi =
F
(
x
ρ − C̃ji

)
F
(
x
ρ − C̃ji

)
+ F

(
−x

ρ − C̃ij

)gij(x).
Without a shock, the share of workers in Ωij(ε) who move from i to j is given by

ℓij = ℓi Pr(∆ij + ρεij < −ρC̃ij |in i) =


ℓi ·
∫ ∞

−∞
Gi

ij(−ρεij − ρC̃ij) dF (εij)

ℓi ·
∫ ∞

−∞
F

(
−∆ij − ρC̃ij

ρ

)
dGi

ij(∆ij)
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=

∫ ∞

−∞

F
(
x
ρ − C̃ji

)
· F
(
−x

ρ − C̃ij

)
F
(
x
ρ − C̃ji

)
+ F

(
−x

ρ − C̃ij

)gij(x) dx
= ρ

∫ ∞

−∞

F (t− C̃ji) · F (−t− C̃ij)

F (t− C̃ji) + F (−t− C̃ij)
gij(ρt) dt (A.22)

Suppose that the distributions of ∆i and ∆j shift by ρ · d∆i and ρ · d∆j , respectively. Then, new
share is given by

ℓij + dℓij = ℓi · Pr(∆ij + ρ(d∆i − d∆j) + ρεij < −ρC̃ij |in i)

= ℓi ·
∫ ∞

−∞
F
(
− ∆ij

ρ − C̃ij − (d∆i − d∆j)
)
dGi

ij(∆ij)

=

∫ ∞

−∞

F
(
x
ρ − C̃ji

)
· F
(
−x

ρ − C̃ij − (d∆i − d∆j)
)

F
(
x
ρ − C̃ji

)
+ F

(
−x

ρ − C̃ij

) gij(x) dx

=

∫ ∞

−∞

F
(
x
ρ − C̃ji

)
·
(
F
(
−x

ρ − C̃ij

)
− f

(
−x

ρ − C̃ij

)
· (d∆i − d∆j)

)
F
(
x
ρ − C̃ji

)
+ F

(
−x

ρ − C̃ij

) gij(x) dx

Thus,

dℓij =

∫ ∞

−∞

F
(
x
ρ − C̃ji

)
· f
(
−x

ρ − C̃ij

)
F
(
x
ρ − C̃ji

)
+ F

(
−x

ρ − C̃ij

)gij(x) dx · (d∆j − d∆i)

= ρ

∫ ∞

−∞

F
(
t− C̃ji

)
· f
(
−t− C̃ij

)
F
(
t− C̃ji

)
+ F

(
−t− C̃ij

)gij(ρt) dt · (d∆j − d∆i) (A.23)

We will take a limit ρ→ 0 to equations (A.22) and (A.23). Note that we have∣∣∣∣ F (t− C̃ji) · F (−t− C̃ij)

F (t− C̃ji) + F (−t− C̃ij)
gij(ρt)

∣∣∣∣ ≤ (F (−t− C̃ij)1t≥0 + F (t− C̃ji)1t<0

)
· sup

x
{gij(x)}∣∣∣∣∣ F

(
t− C̃ji

)
· f
(
−t− C̃ij

)
F
(
t− C̃ji

)
+ F

(
−t− C̃ij

)gij(ρt)
∣∣∣∣∣ ≤ f(−t− C̃ij) · sup

x
{gij(x)}

with∫ ∞

0
F (−t− C̃ij) dt+

∫ 0

−∞
F (t− C̃ji) dt =

∫ ∞

0

∫ −t−C̃ij

−∞
f(x) dx dt+

∫ 0

−∞

∫ t−C̃ji

−∞
f(x) dx dt

=

∫ −C̃ij

−∞

∫ −x−C̃ij

0
f(x) dt dx+

∫ −C̃ji

−∞

∫ 0

x+C̃ji

f(x) dt dx

=

∫ −C̃ij

−∞
(−x− C̃ij)f(x) dx+

∫ −C̃ji

−∞
(−x− C̃ji)f(x) dx,
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which is finite because E[εij ] is well-defined, and∫ ∞

−∞
f(−t− C̃ij) dt = 1,

which is also finite. Thus, we can apply dominated convergence theorem to conclude

ℓij = ρ ·
∫ ∞

−∞

F (t− C̃ji) · F (−t− C̃ij)

F (t− C̃ji) + F (−t− C̃ij)
dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fij

1

· gij(0) + o(ρ)

dℓij =

ρ · ∫ ∞

−∞

F (t− C̃ji) · f(−t− C̃ij)

F (t− C̃ji) + F (−t− C̃ij)
dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F ij

2

· gij(0) + o(ρ)

 · (d∆j − d∆i)

Assume C̃ji = C̃ij = C̃ for all i ̸= j and write F1 = F ij
1 and F2 = F ij

2 . Then, we have

Fij =
ℓij
Li

=
ρgij(0)F1

Li
+ o(ρ)

dFij =
dℓij
Li

=

(
ρgij(0)F2

Li
+ o(ρ)

)
· (d∆j − d∆i)

=⇒ d lnFij =

(
F2

F1
+ o(1)

)
· (d∆j − d∆i) ≡ (F + o(1)) · (d∆j − d∆i)

for all i ̸= j, Thus,

Fii = 1−
∑
j ̸=i

Fij = 1 + o(1)

dFii = −
∑
j ̸=i

dFij = −
∑
j ̸=i

Fij d lnFij = −
∑
j ̸=i

FijF · (d∆j − d∆i) + o(ρ)

= F ·

(
d∆i −

∑
j

Fij d∆j

)
+ o(ρ)

=⇒ d lnFii = F ·

(
d∆i −

∑
j

Fij d∆j

)
+ o(1).

Proof of Lemma A.9. In the steady state, we have

ℓiG
i
ij(x) = ℓi Pr(∆ij ≤ x|in i)

= ℓi Pr(∆ij ≤ x|in i) Pr(stay in i|∆ij ≤ x, in i) + ℓj Pr(∆ij ≤ x|in j) Pr(leave j|∆ij ≤ x, in j)

= ℓi

∫ x

−∞
Pr(∆ij + ρεij ≥ −ρC̃ij)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=F̄ (−
∆ij
ρ

−C̃ij)

dGi
ij(∆ij) + ℓj

∫ ∞

−x
Pr(∆ji + ρεji < −ρC̃ji)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=F (−
∆ji
ρ

−C̃ji)

dGj
ji(∆ji)
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Differentiating with respect to x, we have

ℓig
i
ij(x) = ℓiF̄

(
−x
ρ
− C̃ij

)
giij(x) + ℓjF

(
x

ρ
− C̃ji

)
gjji(−x)

or
F

(
−x
ρ
− C̃ij

)
giij(x)ℓi = F

(
x

ρ
− C̃ji

)
gjij(x)ℓj .

We also have
giij(x)ℓi + gjij(x)ℓj = gij(x),

so we can conclude that

giij(x)ℓi =
F
(
x
ρ − C̃ji

)
F
(
x
ρ − C̃ji

)
+ F

(
−x

ρ − C̃ij

)gij(x).

Proof of Lemma A.4.

F k+1
i =

(
1− αif

k αif
k

βif
k 1− βif

k

)(
ᾱi αi

βi β̄i

)
=

(
ᾱi − αiᾱif

k + αiβif
k αi(1− αif

k + β̄if
k)

βi(ᾱif
k + 1− βif

k) αiβif
k + β̄i − βiβ̄if

k

)
=

(
1− αif

k+1 αif
k+1

βif
k+1 1− βif

k+1

)
.

Thus, we have fk+1(x) = (x− 1) · fk(x) + 1. Define gk(x) = x · fk(2− x)− 1, then we have

gk+1(x) = x · fk+1(2− x)− 1

= x ·
(
(1− x) · fk(2− x) + 1

)
− 1

= (1− x)gk(x).

and g1(x) = −(1− x). Thus, gk(x) = −(1− x)k and hence fk(x) = 1+gk(2−x)
2−x = 1−(x−1)k

2−x .

Proof of Proposition A.5. Note from the definitions of xi and yi that we have

αixi
α1x1

=
βiyi
β1y1

.

Let λi denote this ratio. We then have

(Fk)1,2
(Fk)2,1

=

∑
i xiαi,k∑
i yiβi,k

=

∑
i αixi

(
αi,k

αi

)
∑

i βiyi

(
βi,k

βi

) =
α1x1

∑
i λi

(
αi,k

αi

)
β1y1

∑
i λi

(
βi,k

βi

) =
α1x1
β1y1

where the last equality uses αi,k

αi
=

βi,k

βi
= fk(ᾱi + β̄i).
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E. Additional Figures
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Figure A.1. The Backward and Forward Transition Matrices: NLSY

Notes: Assuming that the economy was in a steady state between years 1980 and 2000, the backward
and forward transition matrices are computed by pooling all observations of the NLSY79 data over this
period. In the left panel, we plot the elements of the aggregate forward transition matrix against those
of the aggregate backward transition matrix. With four sectors, the backward and forward transition
matrices are four-by-four matrices with sixteen elements. In the right panel, we consider four dimensions
of observed heterogeneity—sex, race, education, and age, leading to sixteen groups—and compare the
matrices for all sixteen groups.
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Figure A.2. Differences in bk Series: Manufacturing Sector

Notes: For each k, this figure plots the difference between the diagonal elements of (Fk − Fk+2)
corresponding to the manufacturing sector implied by the canonical model and those observed in the
data. For the canonical model, we compute Fk by multiplying F1 k times. Since we only observe a
finite number of worker flow matrices in the data, we extrapolate it using the estimated structural model.
The same pattern is observed for the other sectors. Data source: NLSY79.
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Figure A.3. Differences in the Response of Sectoral Employment

Notes: This figure plots the values of ∂ ln ℓs,t
∂ws,τ

∣∣∣
canonical

− ∂ ln ℓs,t
∂ws,τ

∣∣∣
data

for 1 ≤ t, τ ≤ 20. These derivatives
are calculated from equation (11) using the worker flow matrices Fk from the NLSY79 data for
∂ ln ℓs,t
∂ws,τ

∣∣∣
data

and using the worker flow matrices implied by the canonical model for ∂ ln ℓs,t
∂ws,τ

∣∣∣
canonical

.
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Figure A.4. Actual and Model-Implied Staying Probabilities: Non-Stationarity

Notes: For each k = 1, . . . , 18 (year), this figure plots the actual probability of workers who choose
manufacturing in 1980 choosing manufacturing again in year 1980+k (blue dots) and the probability
computed by repeatedly multiplying time-varying one-year worker flow matrices (red line); i.e., the
diagonal element of the matrix

∏k−1
κ=1Fκ

1 corresponding to the manufacturing sector. Fκ
1 is the aggregate

worker flow matrix computed using transition observations between years 1980 + κ− 1 and 1980 + κ
from the NLSY data.
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Figure A.5. Actual Staying Probabilities for Different Worker Groups

Notes: For each unique combination of (male, female), (Hispanic/Black, non-Hispanic/Black), and
(low-skilled, high-skilled), this figure plots the steady-state k-year manufacturing staying probabilities,
Pr(st+k = manufacturing|st = manufacturing). Data source: NLSY79.
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(a) Primitives
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Figure A.6. Estimation Result: Canonical Model

Notes: Panel (a) shows the estimated values of the primitives of the canonical model. The four sectors
are Agriculture and Construction; Manufacturing; Communications and Trade; and Services and Others.
Panel (b) shows the resulting transition matrix (or, equivalently, one-year worker flow matrix).
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Figure A.7. Fits of Two-type Model and Five-type Model

Notes: For each of the two-type and five-type models, we compute the model-implied worker-flow
matrix series, {Fk}k=1,...,18. There are a total of 288 elements. This figure plots the differences between
these elements and the actual values observed in the data for each of the two models. The five-type
model provides a slightly better fit, but the difference is not significant.
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Figure A.8. Fit of Recursive Representation

Notes: Plugging randomly generated values of {dwt} (from standard normal distribution) and worker
flow matrices computed from the NLSY data (extrapolated using the structural model) into equation (15),
we can generate a sequence of changes in sectoral employment {d ln ℓt}. Using the computed values of
{Γk}k=1,...6 and {Λk}k=1,...5 and equation (17) instead, we can also compute an approximated sequence
of changes in sectoral employment. These figures compare the actual sequence with the approximated
sequence.
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Figure A.9. Changes in Sectoral Real Wages

Notes: This figure plots changes in sectoral real wages over time following an unexpected permanent
drop in manufacturing prices. Solid lines correspond to the prediction from the sufficient statistics in the
data, and dashed lines correspond to the prediction of the canonical model, without persistent worker
heterogeneity.
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Figure A.10. Changes in Sectoral Values: Exogenous and Endogenous Wage Changes

Notes: This figure plots changes in sectoral values in terms of consumption-equivalent variation for
workers initially employed in different sectors. The plain bars correspond to the prediction from sufficient
statistics in the data. The rightmost hatched bars (Northwest to Southeast) correspond to the prediction
of the canonical model. The hatched bars in the middle (Northeast to Southwest) correspond to the
prediction made by combining the wage changes of the canonical model and the sufficient statistics.
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Figure A.11. Counterfactual Changes in Employment Share and Welfare: Type-specific
Changes

Notes: This figure plots the transitional dynamics following an unexpected permanent drop in manufac-
turing prices for each type of worker. The orange line corresponds to type-1 workers (frequent movers),
and the yellow line corresponds to type-2 workers (infrequent movers).
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Figure A.12. The Quality of First-Order Approximation

Notes: This figure compares the transitional dynamics of welfare (left column) and employment share
(right column) obtained using sufficient statistics formula with those calculated from the exact solution
of the estimated structural model. The top row corresponds to 30% drop in manufacturing prices, the
middle row to 10%, and the bottom row to 1%.
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Figure A.13. Counterfactual Exercises with Different Values of ρ
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Figure A.14. Yearly to Quarterly
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Figure A.15. Manufacturing Shares and Staying Probabilities Across States

Notes: This figure plots the probability of working in manufacturing sector again after one year
against the manufacturing employment share. The size of the circle represents the relative size of the
manufacturing sector. It is the largest in California, followed by Texas, Ohio, and Michigan.
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Figure A.16. Aggregate Worker Flow Matrix Series: Monthly CPS

Notes: This figure clearly shows that the initial three circles are not in line with the remaining four
circles. In particular, the last four circles should be shifted upwards. This is a well-known problem of
the CPS dataset.
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Figure A.17. Fit of the Models with and without Heterogeneity: State-Level Worker Flow
Matrices

Notes: In this figure, we plot the model-implied state-level worker flow matrix series for k = 2, 3 against
that in the data. Blue circles represent the results of the heterogeneous-worker model and orange circles
represent those of the canonical model, which exactly matches the 1-month worker flow matrix. Due
to the short time horizon, worker flow matrices have diagonal elements close to one and off-diagonal
elements close to zero. We separately plot them in the left and right panels.
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Figure A.18. Predicted and Actual Staying Probabilities: State-Level
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Figure A.19. Comparison: CPS and NLSY
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Figure A.20. Model Fit to State-Level Worker Flow Matrix Series: Manufacturing Sector
94



2000 2003:Q4 2006:Q4 2009:Q4 2012:Q4
Time (quarters)

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

R
ea

l W
ag

e 
C

ha
ng

es
 (

%
)

Manufacturing
Wholesale and Retail
Construction
Services

(a) With Worker Heterogeneity

2000 2003:Q4 2006:Q4 2009:Q4 2012:Q4
Time (quarters)

-0.05

0

0.05

0.1

0.15

0.2

0.25

R
ea

l W
ag

e 
C

ha
ng

es
 (

%
)

Manufacturing
Wholesale and Retail
Construction
Services

(b) Without Worker Heterogeneity

Figure A.21. Changes in Real Wages
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