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Abstract

I propose a noisy rational expectations model with persistent noise. Firms learn about

economic conditions from signals, and the noise in the signals is persistent rather than

i.i.d. over time. Firms rationally account for the persistence of noise and update their

interpretations of signals based on ex post observations of true economic conditions. I show

that this process gives rise to a novel mechanism by which optimism arises endogenously,

which in turn amplifies or dampens the effects of underlying shocks. In particular, this

model can generate the delayed overreaction in firms’ expectations documented in the

literature, when firms are better informed about idiosyncratic shocks relative to aggregate

shocks. Moreover, strategic complementarity between firms and the resulting higher-order

optimism further strengthen my mechanism. Finally, I distinguish empirically my rational

theory of optimism from behavioral theories by exploiting the difference in the degree of

overextrapolation between consensus and individual forecasts.
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1. Introduction

How do agents form expectations based on the information they have? Can waves of optimism and

pessimism play a role in driving the economy? Several strands of macroeconomic literature provide

insights into incorporating the role of optimism in business cycle models, focusing on either behavioral

changes in beliefs or exogenous shifts in rational expectations, such as sunspots, noise shocks in public

signals, and sentiment shocks.

In this paper, we capture optimism in an entirely different yet rational way. Agents learn about

economic conditions from signals, but they are uncertain about how to interpret these signals. They

are said to be optimistic if they interpret their signals in an optimistic way. Agents try to correct their

optimism rationally, and in the presence of strategic interaction between agents, they try to learn the

optimism of others as well. In this process, optimism is endogenously determined by the dynamic path

of fundamentals and acts as an amplification or dampening mechanism.1

The key to our mechanism is the assumption of persistent noise. Agents observe noisy signals about

economic conditions, but in contrast to the literature, we assume that noise terms are persistent rather

than i.i.d. over time. Agents rationally account for the persistence of noise and update their beliefs about

noise based on ex post observations of true economic conditions. I show that this process gives rise to

a novel mechanism by which optimism arises endogenously. In particular, when agents observe better

than expected economic conditions, they update their expectation of the noise term downward, implying

that they interpret their future signals more optimistically.

To illustrate the main idea, consider firms that need to forecast market demand for their products

in order to set prices or make production plans. Firms observe noisy signals about market demand

at the beginning of each year, for example, from consumer surveys. Firms also receive feedback on

their prior forecast by observing the realized market demand ex post through the sale of their products.

Suppose that there is a positive shock to market demand, but firms were not well informed about it from

their consumer surveys. Then, realized market demand is higher than firms expected, leading them to

believe that they were too pessimistic in interpreting the survey results. This, in turn, makes them overly

1 Similarly, Angeletos and Lian (2019) study a confidence multiplier that varies endogenously and amplifies demand
shocks.
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optimistic when they make new forecast based on a new survey result. In this way, the effect of the

positive shock propagates into the next year.

We begin by calling into question the validity of the i.i.d. noise assumption commonly made in the

literature and provide two arguments in favor of persistent noise. We model this persistence by assuming

that the noise terms follow an AR(1) process. Rational agents then take this persistence into account

when forming their expectations and try to learn the noise terms in order to best interpret their signals.

Their beliefs about the noise terms affect their forecast and hence their actions. We then formally define

the notion of optimism. If agents underestimate the noise terms in their signals, they will overestimate

the fundamentals for given values of the signals, so we call them optimistic.

We then introduce amacroeconomic noisy rational expectationsmodel in which firms’ output choices

are made under dispersed information about their productivity. We characterize how firms dynamically

learn persistent noise terms in their signals and how this novel channel of learning endogenously

generates optimism, which either amplifies or dampens the underlying productivity shock. We assume

that firms receive feedback on their previous forecast by observing the actual productivity realization.

We assume that the productivity shock consists of two components. Firms receive noisy signals about

the first partly-observed component and choose their output levels. However, true productivity is also

affected by the second unobserved component. This distinction formalizes the idea that there are many

shocks in the real world that differ in the extent to which economic agents are informed about them.2 Our

main finding is that, with persistent noise, the effect of partly-observed shocks on the next period’s

output is dampened because they make firms pessimistic, while the effect of unobserved shocks is

amplified because they make firms optimistic instead. Following the literature, we further assume that

firms are relatively well informed about idiosyncratic shocks, so that partly-observed shocks correspond

to idiosyncratic shocks while unobserved shocks correspond to aggregate shocks. In this case, aggregate

optimism fluctuates procyclically with the underlying aggregate shocks, and aggregate output exhibits

delayed overreaction to aggregate productivity shocks, as in Angeletos, Huo, and Sastry (2020).

Next, we introduce strategic complementarity in our baseline model. This gives firms an incentive

to forecast others’ optimism, others’ beliefs about others’ optimism, and so on (i.e., higher-order

2 For example, firms make decisions after receiving noisy information about some shocks that affect market demand, but
realized market demand is also affected by some other shocks. Firms may be relatively well informed about shocks that are
realized before they make forecasts, or about shocks that are idiosyncratic to firms, which may then be well reflected in the
consumer survey. In contrast, firms are likely to be less well informed about shocks that are realized after the forecasts have
been made, or about aggregate shocks, such as shocks to aggregate demand.
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optimism). We characterize how firms update their higher-order optimism and how this higher-order

optimism in turn affects firms’ output choices through its effect on higher-order beliefs about aggregate

productivity. We first show that the main result continues to holds in the extended model with strategic

complementarity: the effect of partly-observed shocks is dampened while the effect of unobserved

shocks is amplified. Moreover, we show that the presence of strategic complementarity and the resulting

higher-order optimism always strengthen our mechanism relative to the baseline model. In other words,

when firms observe better than expected economic conditions, they become optimistic not only about

their signals (first-order optimism) but also about others’ optimism (higher-order optimism). This result

is in stark contrast to the literature, which instead documents that the higher the degree of strategic

complementarity is, the less responsive agents are to the underlying shocks.

Finally, we turn to the empirical content of our theory: how can we interpret forecast data through

the lens of our framework? There is a large body of empirical work that uses survey forecast data to

measure agents’ expectations directly. This literature often assumes that forecasters do not observe

past realizations, even ex post. This is partly because observing past realizations makes the problem

essentially static in their setting and makes it difficult to explain what we can observe in the dynamic

forecast data. Our theory provides a completely different way of interpreting the forecast data. We view

these forecast data as the results of agents’ dynamic learning, in which they can observe past realizations

but are trying to learn how to interpret their own information, i.e., noise terms. Our model explains

prominent empirical findings in the literature, includign Coibion and Gorodnichenko (2015); Kohlhas

and Walther (2020); and Angeletos, Huo, and Sastry (2020). However, many other standard models

can also explain these findings, in particular behavioral theories of overextrapolation combined with

information frictions. To distinguish our model from these theories, we exploit the difference between

the degree of overextrapolation in consensus and individual forecasts. In the IBES dataset, analysts’

expectations for earnings growth exhibit overextrapolation from past realizations only whenwe aggregate

them into consensus forecasts. This is consistent only with our rational theory of overextrapolation.

The rest of the paper is organized as follows. Section 2 justifies our assumption of persistent noise

and formalizes the notion of optimism. Section 3 develops a macroeconomic model without strategic

complementarity. We characterize the learning of firms and see how our mechanism amplifies or

dampens the underlying productivity shocks. In Section 4, we use an extended model to explore further

implications when strategic complementarity is present. Section 5 discusses the new interpretation
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of dynamic forecast data and provides empirical evidence that is suggestive of our theory. Section 6

concludes.

2. Persistent Noise Terms and Optimism

In this section, we introduce the key element of our theory—persistent noise terms in signals—and

illustrate how it naturally leads to a definition of optimism. The literature that investigates the role of

expectations and information often postulates that agents receive noisy signals about the true state of

nature (hereafter, fundamental) and that they know the stochastic relationships between the signals and

fundamental. For example, signals are often modeled as fundamental plus a random noise term with a

known distribution:

st = at + ξt

where st is the signal about the fundamental at at time t, and ξt is the noise term. This assumption is

just a modeling device that captures the idea that we are partly informed about the true state of the world

while preserving the tractability of models. Most of the papers in the literature, however, assume that

noise is a random variable independent across time.3 This time-independence assumption simplifies the

analysis a lot, and, combined with normality assumptions, often leads to closed-form solutions.

Whether this i.i.d. assumption is a good or bad description of the real world depends on how we

interpret the noisy signal; i.e., what the real-world counterpart of the noise is. There are two prominent

interpretations in the literature, and we will argue in this section that whatever interpretation we adopt,

persistent noise is more realistic assumption. We then discuss the implications of this persistence in the

following sections.

First, we can literally interpret the signal as noise-ridden information about fundamental, and agents

directly observe this signal. In the real world, information sources are always biased, and the bias is

3 One crucial reason for this assumption is that with persistent variables that cannot be observed perfectly, we have to
tackle the infinite regress problem as in Townsend (1983). A large number of works have explored how to solve the infinite
regress problem using either guess-and-verify, approximation, or the frequency domain technique. A partial list of these works
includes Sargent (1991), Kasa (2000), Nimark (2017), Rondina and Walker (2018), and Huo and Takayama (2018). Even in
those works, it is often assumed that only fundamentals are persistent, while noise follows i.i.d.Notable exceptions are Huo and
Takayama (2015, 2018), but their main focuses are on the methodological contribution rather than on economic implications
of persistent noise terms.
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likely to be persistent across time. Agents, however, do not know the exact value of this bias. This gives

rise to an additional component of noise, which makes the perceived noise also likely to be persistent.4

The second interpretation comes from the literature on rational inattention. Consider a slightly

generalized version of the attention problem studied by Sims (2003) and Mackowiak and Wiederholt

(2009):

min
b0,b(·),ct(·)

E
[(
E[at|st]− at

)2]
s.t. I({st}; {at}) ≤ κ

at = ρaat−1 + εt

st = b0 + b(L)εt + ct(L)ξ̃t

where εt and ξ̃t follow independent Gaussian white noise processes.5 The decision maker chooses a

signal process st to forecast at, subject to a constraint on the information flow between {st} and {at},

which sets an upper bound for

I({st}; {at}) ≡ lim
T→∞

1

T
I(s1, · · · , sT ; a1, · · · , aT )

where I(·; ·) denotes the mutual information. Sims (2003) and Mackowiak and Wiederholt (2009) show

that it is without loss to assume that the decision maker makes a forecast after observing a signal of the

form “true state plus a time-independent noise term:”

st = at + σ · ξ̃t

4 This makes no difference in static settings as it only adds another layer of uncertainty about the stochastic relationship.
To see this point, consider a signal s = a+ ξ subject to bias, ξ = bias+ e. An agent believes that the bias is distributed as
bias ∼ F (·) and that the (unbiased) error term is distributed as e ∼ G(·). In static settings, it is isomorphic to the case in
which the agent believes that the noise term ξ follows a known distribution

P (ξ ≤ ξ̂) =

∫
F (ξ̂ − e)dG(e).

In contrast, this additional layer of uncertainty is important in dynamic settings. If the bias in an information source is
persistent, agents then have incentives to correct this bias over time. To see this clearly, consider a dynamic extension in
which the agent uses the signal st = at + ξt to form expectations about at for two periods t = 0, 1. Suppose we assume that
ξt = bias + et so that the bias is time-invariant. Assume further that the agent can observe the true realization of a0 at the
beginning of period 1. The agent then makes another prediction about a1 after observing s1. Then, the agent tries to correct
the bias by comparing the previous signal s0 with the realization a0.

5 This is a generalized version as we consider ct(·) instead of a time invariant function c(·).
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where σ is a constant. In other words, such signals are optimal when agents can choose an information

structure under the above constraint.

This result gives an elegant justification for the i.i.d. assumption. It is, however, not robust in the

sense that it depends crucially on the precise form of the information constraint. For example, when we

consider other forms of information constraints such as

I(st; at) ≤ κ, ∀t, (1)

then we can easily show that agents can always be better off by inducing correlations in their signals.

Lemma 1. The signals with i.i.d. noise terms, st = at+σ · ξ̃t, cannot attain the minimum of the following

attention problem

min
b0,b(·),ct(·)

E
[(
E[at|st]− at

)2]
s.t. I(st; at) ≤ κ, ∀t

at = ρaat−1 + εt

st = b0 + b(L)εt + ct(L)ξ̃t.

Instead, signals with persistent noise terms, st = at + σ · ξ̃ where ξ̃ ∼ N (0, 1) attain the minimum.

Proof. All proofs are in Appendix A.

The intuition is simple, agents can make noise terms correlated across time periods for free under this

information constraint.6 By doing so, however, agents can dynamically learn and correct the persistent

component of noise.7 There is, of course, no a priori reason that the information constraint in the real

world is given by (1). However, the same is true that no reason favors the original information constraint

of Sims (2003) and Mackowiak and Wiederholt (2009). Thus, Lemma 1 gives us a takeaway that unless

the real-world information constraint is exactly the same as what Sims (2003) and Mackowiak and

Wiederholt (2009) postulate, decision makers would optimally choose correlated noise terms in order to

exploit their abilities to correct the persistent component of the noise terms over time.
6 This is costly in the original formulation of Sims (2003) and Mackowiak and Wiederholt (2009).
7 This is obvious when agents receive feedback later on so the objective function changes to E

[(
E
[
at|st, at−1

]
− at

)2].
However, this also holds without such feedback because agents can ultimately learn the precise value of ξ̃ after observing an
infinite number of signal realizations.
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Illustrative Example. We have argued that regardless of howwe interpret the noise term, its counterpart

in the real world is likely to be correlated across time periods. To further illustrate this argument, consider

a forecaster who makes predictions of, say, the annual US inflation rate. There are various information

sources she can use to make her prediction, but suppose that she only gets information from newspapers.

There are N available newspapers, each of which is informative about the inflation rate. The forecaster

chooses to subscribe to a subset of the newspapers while being subject to attention costs. Thus, these

newspapers can be thought of as information sources in Myatt and Wallace (2004) and Pavan (2016).

First note that if a specific newspaper gives a positively biased view of the inflation rate this year, then

it is likely to give a view biased in the same direction next year. Consider a constraint on the attention

cost which requires that the forecaster can read at most, say, three newspapers each year. Under this

constraint, which is analogous to the cosntraint (1), the forecaster would optimally choose to read the

same set of newspapers every year because she can at least partly correct the bias in the newspapers

by herself.8 Since the bias in each newspaper is persistent, and the forecaster would choose to read the

same newspapers, it is as if she were receiving a noisy signal whose noise term is correlated across time

periods. In contrast, under a constraint which is analogous to the original constraint in Sims (2003) and

Mackowiak and Wiederholt (2009), if she reads three specific newspapers this year, then it would be

strictly more costly (in terms of the cognitive cost) to read the same set of newspapers next year because

she is able to get strictly more information from those newspapers. Thus, we reach a counterintuitive

conclusion that it can be optimal to read three new newspapers every year.

Remark. To fix ideas, we talked about biased information sources and agents who try to learn the bias.

In the real world, however, information sources are not only biased but also absent from a pre-specified

way of interpreting them. For example, if you observe that the current unemployment rate is 5%, then

how can you interpret this number as a signal about the current inflation rate? It is indeed informative

about the inflation rate to some degree, but it is not like observing a random variable which is distributed

around the inflation rate as we assumed. Forecasters need to interpret information sources they have, but

they are uncertain about how to interpret them. Thus, the forecaster in the previous example can also

be viewed as the one who tries to correct her way of interpreting newspapers. In this sense, “learning

noise terms” in this paper also means “learning how to interpret information.”

8 “Better the devil you know than the devil you don’t.”
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We have argued so far that it is natural to assume persistent noise terms. From now on, we model

this persistence by simply assuming that agents observe a noisy signal about the fundamental at

st = at + ξt

whose noise term ξt is auto-correlated9

ξt = ρξt−1 + ηt.

This is only a small departure from the literature and enables us to maintain tractability.

The persistence of noise terms naturally leads to a formal definition of optimism. A crucial difference

from the model with i.i.d. noise terms is that agents try to learn the noise terms ξt in their signals.

Agents’ expectations about the noise terms affect how optimistic they are in interpreting the signals,

which in turn affects their forecasts and hence their decisions. We consider two information sets Ω̃t

and Ωt, which are the information sets of an agent right before and right after, respectively, observing a

signal st. From an outside observer’s perspective, if an agent underestimates her noise term ξt, then for

a given realization of her signal st, she would overestimate the fundamental at. Therefore, an agent is

optimistic in interpreting her signal st if her belief about the noise term ξt is lower than the true value.

This discussion leads to the following definition of (first-order) optimism.10

Definition 1. An agent is said to be ex-ante (ex-post, respectively) optimistic if she underestimates the

noise term in her signal:

E[ξt|Ω̃t] < ξt (E[ξt|Ωt] < ξt, respectively)

The ex-ante (ex-post, respectively) optimism of an agent is defined to be the extent to which she

underestimates the noise term:

Õt ≡ ξt − E[ξt|Ω̃t] (Ot ≡ ξt − E[ξt|Ωt], respectively)

9 Throughout the paper, we will use the letter ξ to denote noise terms.
10 In Section 4, we will define higher-order optimism when there are multiple agents who play a game with strategic

complementarity.
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Thus, ex-ante optimism captures how optimistic an agent is before observing a signal, and ex-post

optimism captures how optimistic she is in interpreting a realized signal. In the next section, we will

see how agents’ dynamic learning about the persistent noise terms endogenously generates optimism,

and how the resulting optimism affects equilibrium outcomes.

3. The Baseline Model

We start with a macroeconomic model in which firms’ output choices are made under incomplete

information about their productivity. The model structure is closely related to the island model in

Angeletos and La’O (2009b) and Benhabib, Wang, and Wen (2015), but the timeline is more similar

to that in Kohlhas and Walther (2020). In this section, we consider specific parameter values under

which we have no strategic complementarity between firms’ decisions. This enables us to focus on how

firms learn about persistent noise terms in their own signals. Compared to the benchmark case with

i.i.d. noise terms—as is often the case in the literature—this novel channel of learning endogenously

generates optimism and eitheramplifies or dampens underlying shocks depending on how much firms

are informed about the shocks. In the next section, we consider the case with strategic complementarity

and show that the presence of strategic complementarity always strengthens our mechanism.

Timeline. There is an infinite number of periods t = 0, 1, . . . and a representative household consisting

of a continuum of workers. We use the island analogy of Lucas (1972) to capture the incompleteness

of information in the real world. There is a continuum of islands i ∈ [0, 1], each of which has its own

labor market and own information set. Island i is inhabited by a continuum of firms j ∈ [0, 1], each

of which specializes in the production of differentiated commodities. We will index these firms and

their commodities by (i, j) ∈ [0, 1]× [0, 1]. The timeline is as follows. First, at the beginning of each

period, the household sends one worker to each island. Second, after observing noisy signals about

island-specific productivity, firms commit to their output levels, and workers post wages at which they

commit to supply any amount of labor. Third, the island-specific productivity realizes and firms’ labor

demand is determined by the committed level of output and the productivity. Finally, workers return to

their home and commodity markets open. Prices adjust to clear the markets.
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Household. A representative household consists of a continuum of workers who solve a team problem

of jointly maximizing the household utility, which is given by

E0

[ ∞∑
t=0

βt(logCt − ν ·Nt)

]

where Nt =
∫ 1
0 Nit di is the total labor supply of its workers. For simplicity, we assume a unit

intertemporal elasticity of substitution and a unit Frisch elasticity of labor supply, but none of our results

qualitatively depend on this assumption. The consumption Ct has a nested structure. First, it is CES

aggregation of the consumption bundle {Cit}i∈[0,1] from different islands,

Ct =

(∫ 1

0
C

1− 1
σ

it di

) σ
σ−1

where σ ≤ 1 is the elasticity of substitution across consumption from different islands. Second, the

consumption Cit from island i is also CES aggregation of the consumption bundle {Cijt}j∈[0,1] from

monopolistic firms in island i

Cit =

(∫ 1

0
C

1− 1
η

ijt dj

) η
η−1

(2)

where η > 1 is the elasticity of substitution across firms. We normalize the price index to one,

1 = Pt ≡
(∫ 1

0
P 1−σ
it di

) 1
1−σ

where Pit =

(∫ 1

0
P 1−η
ijt dj

) 1
1−η

where Pijt is the price of the good from firm j in island i, Pit is the price index for goods in island i.

The budget constraint dictates that the total purchase of consumption goods and bonds cannot exceed

the total income, which consists of profits, wage, and payment from the bond:11

∫ 1

0

∫ 1

0
PijtCijt didj +Bt+1 ≤

∫ 1

0

∫ 1

0
Πijt didj +

∫ 1

0
WitNit di+ (1 +Rt)Bt

where Bt is the bond holding in period t, Rt is the gross interest rate between period t and t+ 1, Πijt

is the profit of firm j in island i, Wit is the wage in island i, and Nit is the labor supply of its worker

sent to island i. When workers jointly maximize the utility of the household they belong to, they are

subject to informational constraints. The labor supply decisions of workers sent to different islands are

11We do not need to distinguish nominal terms and real terms because we normalize Pt = 1.
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based on different information sets. After they return to their home, all the information is shared, and

the household makes consumption and saving decisions.

Firms. Firm j in island i has a production function

Yijt = Ait ·N θ
ijt

where Ait is the common productivity of firms in island i, Nijt is the firm’s employment, and θ ∈ (0, 1]

governs the decreasing return to scale in production. After commodity markets open and prices clear

these markets, the firm’s realized profit is

Πijt = PijtYijt −WitNijt.

Market Clearing. A key feature of the model is that decisions of firms and workers are made under

imperfect information. After observing a signal for island-specific productivity, firms commit to the

output level, Yijt, and workers post wages Wit. As will become evident in Lemma 2 below, this

assumption makes firms choose higher output levels when they are more optimistic. Under this

assumption, the labor market clearing is trivial: given the island-specific productivity, Ait, Firm j in

island i demands

Nijt = (Yijt/Ait)
1/θ (3)

units of labor at the equilibrium wageWit. After production takes place, goods markets open, and the

price Pijt adjusts to clear the market: Cijt = Yijt for all (i, j).

Shocks and Information. The only uncertainty is on the island-specific productivity,Ait, which follows

an AR(1) process in log,12

ait ≡ logAit = ρaait−1 + εit.

We further assume that the innovation εit consists of two components,

εit = εpit + εuit

12 Another way of modeling uncertainty is to assume island-specific preference shocks and aggregate demand shocks. But
it is more difficult to take this route because it entails endogenous signals.
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where εpit ∼ N
(
0, σ2

p

)
and εuit ∼ N

(
0, σ2

u

)
are independent across time periods and independent of each

other.13 We define corresponding aggregate components of these variables as

at ≡
∫ 1

0
ait di, εpt ≡

∫ 1

0
εpit di, and εut ≡

∫ 1

0
εuit di.

The difference between the two components is the extent to which firms are informed about them. The

shock εpit is called a partly-observed shock because, before making their decisions, firms and workers in

island i receive a noisy signal

sit = ρaait−1 + εpit + ξit. (4)

Thus, firms are at least partly informed about the component εpit when they make their decisions in

period t. In contrast, the shock εuit is called unobserved because it is not contained in firms’ and

workers’ information set when they make their decisions at period t. Because the distinction between

partly-observed shocks and unobserved shocks are important for our mechanism, we summarize it in

Definition 2. This distinction formalizes the previous observation that there are many shocks in the real

world that differ in the extent to which economic agents are informed about them.

Definition 2. Both partly-observed shocks εpit and unobserved shocks εuit drive the island-specific

productivity. But when firms and workers make their decisions, they only receive signals about the

partly-observed shocks while being completely uninformed about the unobserved shocks.

Given a period-t information setΩit that we will soon specify, firms and workers in island imaximize

their expected profits and expected household utility, respectively. Formally, firm j in island i chooses

the level of Yijt that solves

max
Yijt

E
[
C−1
t ·Πijt

∣∣Ωit

]
s.t. Πijt = PijtYijt −WitNijt

Yijt =

(
Pijt

Pit

)−η(Pit

Pt

)−σ

Yt

Yijt = Ait ·N θ
ijt

13 In this section, we do not restrict their correlation structure across islands because it makes no difference in the absence
of strategic interaction between firms in different islands.
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where the second constraint comes from the isoelastic demand relation. Also, the representative worker

in island i chooses the level ofWit in a competitive way that solves

max
Wit

E
[
C−1
t

Wit

Pt
Nit − νNit

∣∣∣∣Ωit

]

s.t. Nit =



0 ifWit > W ′
it∫ 1

0

(
Yijt
Ait

) 1
θ

dj ifWit = W ′
it

∞ ifWit < W ′
it

where W ′
it is the wage level that other workers in island i choose. We should have W ′

it = Wit in the

equilibrium.

Persistent Noise and Feedback. The modeling assumptions so far are standard in the literature, except

possibly for the timing assumption. Now we introduce our two main assumptions. First, we assume that

the noise terms in the signals are persistent:

ξit = ρξit−1 + ηit where ηit ∼ N
(
0, (1− ρ2)σ2

η

)
where the innovation ηit is i.i.d. across time periods and across islands.14 After observing the signal,

firms form their beliefs about the island-specific productivity ait.

Second, we assume that firms in island i receive feedback on their previous forecast by observing

the true productivity realization ait after making their decisions. Thus, the information set Ωit that the

firms’ forecast is based on contains not only their signals up to date t but also the history of previous

feedback15

Ωit = (· · · , sit−2, ait−2, sit−1, ait−1, sit).

This is a natural assumption in our setting. We assume that firms commit to the output levels, Yijt.

When labor market opens, hence, they have to know the exact levels of their productivity Ait in order

14Whether these noise terms are correlated across islands is irrelevant in this section as we will assume away strategic
interaction between islands.

15 One might argue that it is also natural to assume that firms and workers can learn from the commodity markets. Indeed
firms and workers can fully learn the aggregate shock εut from observing the prices and quantities in the commodity markets.
However, we consider agents suffering a form of internal schizophrenia as in the vast majority of the literature. We think of the
firms having two personalities. One choosing Yijt is inattentive and do not learn from the commodity markets, and another,
who does not communicate with the former, adjusts the price to clear the commodity market. See Angeletos and La’O (2009a)
for trade-offs in this modeling choice.
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to compute the amount of labor needed to fulfill their commitment, which is given by equation (3).

Likewise, workers can compute the island-specific productivity based on the labor demand of firms in

their island. The main role of this assumption is to allow agents to receive feedback on their previous

forecasts by observing the true realization ex post. However, it also plays an important role in making

the analysis tractable and is exactly the same assumption that many papers adopt in order to simplify the

learning to an essentially static one. In general, firms dynamically learn the values of both ait and ξit.

The presence of feedback, however, essentially allows us to abstract from the dynamic learning about

ait and to focus on the dynamic learning about ξit. The logic of this section, however, would still hold

insofar as firms observe the true productivity ex post with sufficiently high precision. Lastly, we define

an additional information set that agents possess right before observing the signal,

Ω̃it = Ωit\(sit) = (· · · , sit−2, ait−2, sit−1, ait−1).

Recall that we define ex ante and ex post optimism as

Õit = ξit − Ẽit[ξit] where Ẽit[·] ≡ E[·|Ω̃it]

Oit = ξit − Eit[ξit] where Eit[·] ≡ E[·|Ωit].

We summarize the timeline of the model in Table 1. To emphasize the difference in the timing

between receiving the signal sit and receiving the feedback ait, we think of each period as consisting of

two stages. Finally, we define an equilibrium as follows where we write Ω ≡ (Ωit)i and A ≡ (Ait)i.

Definition 3. A rational expectations equilibrium is a sequence of allocations {Cijt(Ω, A), Yijt(Ωit),

Nijt(Ωit, Ait)} and prices {Wit(Ωit), Pijt(Ω, A)} such that (i) In stage 1, workers and firms maximize

their expected objective functions based on the information they have; (ii) In stage 2, the representative

household maximizes its utility, taking the prices as given; and (iii) All markets clear.

Illustrative Example (Continued). To see that the main message of this section is not confined to our

macroeconomic example, let us go back to the previous forecaster example. A forecaster i makes a

forecast, or nowcast, yit = Eit[ait] about the inflation rate ait each year. The forecaster is indeed partly

informed about some shocks from the newspapers. However, there are many other shocks that affect

the inflation rate while not being covered in the newspapers, or whose effects on the inflation rate are

14



Table 1: Timeline
...

ait−1 = ρaait−1 + εpit−1 + εuit−1

period t
stage 1

sit = ρaait−1 + εpit + ξit

where ξit = ρξit−1 + ηit

Commit to Yijt andWit

stage 2 ait = ρaait−1 + εpit + εuit
...

Note: The variables in boxes are those observed by agents in island i.
All the shocks (except for ξit) indexed by t are independent across time
periods. All different types of shocks are independent of each other.

not even conceived by the forecaster. These are captured in the unobserved shock εuit. Afterwards the

forecaster can observe the realized value of the inflation rate.16

Optimality Conditions. The optimal wage choice of the representative worker in island i is given by

Wit = ν ·
(
E
[
C−1
t

∣∣Ωit

])−1
,

which is a intratemporal optimality condition equating the marginal disutility from labor with the

marginal utility from consumption. Log-linearizing this condition yields17

wit = E[ct|Ωit] (5)

where we use small letters to denote the log deviations from the steady state values. The higher the

aggregate consumption that workers expect, the higher the wage needed to compensate them. Next,

consider the firm’s optimization problem. Firm j in island i solves

max
Yijt

Eit

[
Y −1
t

{
Y

1− 1
η

ijt Y
1
η

t P
1−σ

η

it −Wit

(
Yijt
Ait

) 1
θ

}]

16 Based on the literature on rational inattention such as Sims (2003) and Mackowiak and Wiederholt (2009), one might
argue that even if the realized inflation rates are publicly revealed, the forecasters might not pay attention to them. However, it
is unlikely that the forecasters who made a prediction for the inflation rate do not pay high attention to the realized value of it.

17 Since Lucas (1972), the log linearization is frequently used in the literature as it allows a simple representation of the
equilibrium with a signal extraction problem.
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where we impose Ct = Yt. The first order condition gives

(
1− 1

η

)
Y

− 1
η

ijt Eit

[
Y

−1+
1
η

t P
1−σ

η

it

]
=

1

θ
Y

1
θ
−1

ijt Eit

[
Y −1
t WitA

− 1
θ

it

]
.

Log-linearizing, we have

(
1− 1

η − 1
θ

)
yijt = Eit

[
− 1

ηyt + wit − 1
θait −

(
1− σ

η

)
pit

]
.

The symmetry across firms in island i implies

Pit = Pijt =

(
Yit
Yt

)− 1
σ

,

which together with equation (5) shows that the equilibrium of our micro-founded model can be

represented by the perfect Bayesian equilibrium of games with strategic complementarity as in Angeletos

and La’O (2009a).

Lemma 2. Firms’ equilibrium output choices, up to a log-linear approximation, are characterized by

the solution to the following fixed-point problem:

yijt = Eit[(1− α)ait + αyt]

where the degree of strategic complementarity α is given by

α =
1/σ − 1

1/θ + 1/σ − 1
∈ [0, 1).

In this section we maintain the following assumption in order to assume away strategic complemen-

tarity, α = 0, so that we can focus on how firm learn about their own noise terms.

Assumption 1 (No Strategic Complementarity). σ = 1.

Remark. Before we proceed, it is worth discussing some of the modeling choices we made. First, it

makes no difference if we assume a general CRRA utility from consumption, C
1−γ
t
1−γ . We can follow the

same steps to show that the equilibrium output choice is given by

yijt = Eit[(1− α)ãit + αyt]
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where ãit = 1/θ
1/θ+γ−1ait is the normalized productivity. With this normalization, we can get the same

result as in the case with γ = 1. Second, if we assume that the disutility from labor has a form

ν · N1+ε
t
1+ε instead of ν ·Nt, then we have an additional aggregate productivity term in the representation,

yijt = Eit[(1−α)ait+αyt+β ·at] for some constant β > 0. This only complicates the learning of firms

without giving further intuition, so we assume constant marginal distutility from labor. Third, if we

assume that firms commit toNijt instead of Yijt, then the optimal labor demand choiceNijt is decreasing

instead of increasing in Eit[Ait]. This is because the CES aggregation (2) features diminishing marginal

returns, which implies that if productivity doubles, firms would increase output less than twice as much.

Thus, optimism leads to lower output, which is the opposite of what we are trying to capture.

Benchmark: i.i.d. noise terms. We conclude this section with a benchmark case with i.i.d. noise terms,

as in the literature. This case is nested in the previous model with ρ = 0. Since we abstract from

dynamic learning of productivity, there is nothing left to learn dynamically, and the problem essentially

becomes a repetition of static learning problems. Thus, what happened in one period has no effect on

firms’ decisions in the next period. In particular, it does not change firms’ optimism in the next period.

Therefore, shocks can affect tomorrow’s output only through their effects on productivity, regardless of

whether they are partly-observed or unobserved. This is one of the reasons why Woodford (2003) does

not adopt the assumption of Lucas (1972) that fundamentals—monetary disturbances—become public

information within a period. Given that monetary statistics are reported promptly, Woodford (2003)

follows Sims (2003) in assuming limited attention. In this paper, however, underlying shocks will have

persistent effects even if firms observe productivity within a period.

We can guess and verify the coefficients of a linear equilibrium. Proposition 1 summarizes the

result.

Proposition 1. If noise terms in signals are i.i.d., ρ = 0, the optimal output choice of firms is given by

yijt+1 = ρ2aait−1 + ρaε
p
it + ρaε

u
it + K̃εpit+1 + K̃ηit+1 where K̃ =

σ2
p

σ2
η+σ2

p
∈ (0, 1),

which can be aggregated into

yt+1 = ρ2aat−1 + ρaε
p
t + ρaε

u
t + K̃εpt+1.
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Thus, the effects of period-t shocks on period-(t + 1) outcomes are identical to their effects on the

fundamental:
∂yt+1

∂εut
=

∂at+1

∂εut
and ∂yt+1

∂εpt
=

∂at+1

∂εpt
.

Note that a contemporaneous partly observed shock affects firms’ decisions less than one-for-one,

reflecting the fact that firms cannot fully identify this shock. On the other hand, a contemporaneous

unobserved shock cannot affect their decisions as it is not in their information set.

Persistent noise terms. Let us go back to our main case with persistent noise terms, ρ ∈ (0, 1). We

will characterize how firms update their beliefs about their noise terms and how this learning affects

firms’ forecasts of the productivity and hence their output choices. We write firms’ belief about ξit−1

right before observing sit as ξit−1|Ω̃it ∼ N (mit−1, Vt−1). After observing sit, firms in island i make a

forecast about ait according to Bayes’ rule:

Lemma 3. Bayesian updating leads to the following forecast:

Eit[ait] = ρaait−1 +Kt

(
sit − ρaait−1 − ρmit−1

)
where Kt =

σ2
p

ρ2Vt−1+(1−ρ2)σ2
η+σ2

p
∈ (0, 1)

= ρaait−1 +Kt

(
εpit + Õit

)
= ρaait−1 + εpit +Oit

Since firms in island i know the value of ait−1 at this point, it directly affects their forecasts. The

contemporaneous partly-observed shock has less than a one-for-one effect (we will soon show that a

positive realization of εpit reduces Oit), while the contemporaneous unobserved shock has no effect,

as in the benchmark. The difference is that now firms’ forecasts also depend on how optimistic they

are. Optimistic firms interpret their signals more optimistically, which leads them to make optimistic

forecasts.

After making a forecast, firms in island i receive feedback at stage 2 by observing the true productivity,

ait, and update their beliefs about the noise term by looking back on their previous forecasts. This

learning can be characterized by the Kalman filter and the results are summarized in the next lemma.
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Lemma 4. The law of motions for mit and Vt are given by

mit = (γ1(Vt−1) + γ2(Vt−1)) · sit + γ3(Vt−1) · ρmit−1 − γ1(Vt−1) · ρaait−1 − γ2(Vt−1) · ait

Vt =
σ2
pσ

2
u(ρ

2Vt−1 + (1− ρ2)σ2
η)

(σ2
p + σ2

u)(ρ
2Vt−1 + (1− ρ2)σ2

η) + σ2
pσ

2
u

where

γ1(Vt−1) =
σ2
u(ρ

2Vt−1+(1−ρ2)σ2
η)

(σ2
p+σ2

u)(ρ
2Vt−1+(1−ρ2)σ2

η)+σ2
pσ

2
u

γ2(Vt−1) =
σ2
p(ρ

2Vt−1+(1−ρ2)σ2
η)

(σ2
p+σ2

u)(ρ
2Vt−1+(1−ρ2)σ2

η)+σ2
pσ

2
u

γ3(Vt−1) =
σ2
pσ

2
u

(σ2
p+σ2

u)(ρ
2Vt−1+(1−ρ2)σ2

η)+σ2
pσ

2
u
.

Note that γ1(Vt−1), γ2(Vt−1), γ3(Vt−1) ∈ (0, 1) and γ1(Vt−1) + γ2(Vt−1) + γ3(Vt−1) = 1.

We can easily prove that there is a unique fixed point V such that Vt−1 = V implies Vt = V . We can

also show that the sequence (Vt)t converges to this fixed point for any initial value of V0 ≥ 0 . Thus, we

will consider a stationary environment in which Vt = V for all t. We can then write the law of motion

formit in a time-invariant form:

mit = (γ1 + γ2) · sit + γ3 · ρmit−1 − γ1 · ρaait−1 − γ2 · ait where γi ≡ γi(V ).

Also, we define the stationary Kalman gain as K ≡ σ2
p

ρ2V+(1−ρ2)σ2
η+σ2

p
∈ (0, 1). We are now able to

characterize the dynamics of optimism. Recall that we defined the optimism as the extent to which firms

in island i underestimate ξit.

Proposition 2. The law of motions for ex ante and ex post optimism, Õit ≡ ξit − Ẽit[ξit] and Oit ≡

ξit − Eit[ξit], are given by

Õit+1 = γ3ρÕit − ργ1ε
p
it + ργ2ε

u
it + ηit+1

Oit+1 = γ3ρOit − (1−K)εpit +Kργ2ε
u
it +Kηit+1.

Thus, a positive realization of partly-observed shocks (unobserved shocks, respectively) makes firms

pessimistic (optimistic, respectively) next period.
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First, we can see that there is inertia in optimism, as firms can only correct their optimism through

noisy learning.18 Thus, a positive shock in the noise term, ηit+1, increases the firm’s optimism, which

decays slowly over time. More interesting is the response of optimism to the underlying shocks. The

partly observed shock and the unobserved shock have opposite effects on optimism. The intuition

is simple. Suppose that realized productivity ait = ρaait−1 + εpit + εuit is greater than its expected

value ρaait−1, and firms in island i observe this increase at the end of period-t. If this increase were

solely due to an increase in εuit, it would not be reflected in sit at all, so the realized value of ait is

higher-than-expected from the perspective of firms in island i. This makes them think that they were

too pessimistic in interpreting sit, which in turn induces them to interpret sit+1 more optimistically in

the next period. Therefore, a positive innovation in the unobserved shock increases firms’ optimism.

In contrast, if the increase in the fundamental is due only to the high εpit, agents rationally attribute

this increase to both εpit and εuit when they observe ait. However, the high realization of ε
p
it was fully

reflected in sit. Thus, the realized value of ait is lower-then-expected for firms in island i. This makes

them possess a more pessimistic belief in the next period.

Before turning to the analysis of firms’ output choices, we discuss comparative statics results for

γ1, γ2, and γ3 with respect to variance parameters, σ2
p, σ

2
u, and σ2

η . Lemma 5 summarizes the results.

Lemma 5. We have the following comparative statics.

(1) γ1 is increasing in σ2
u and σ2

η , while decreasing in σ2
p

(2) γ2 is increasing in σ2
p and σ2

η , while decreasing in σ2
u

(3) γ3 is increasing in σ2
p and σ2

u, while decreasing in σ2
η

To understand this result, first consider Part (2), which states how the effect of the unobserved shock

on optimism, γ2, depends on the variance parameters. The main mechanism that changes optimism is

the rational confusion between various shocks. If the partly-observed shock is relatively more volatile,

then firms misattribute an increase in the unobserved shock more to the partly-observed shock, so they

underestimate their noise terms more. Thus, we get a larger effect of the unobserved shock on optimism.

Following the same logic, σ2
u tends to reduce the effect of the unobserved shock on optimism. Moreover,

since optimism arises as firms overestimate or underestimate their ξit, and firms are more likely to do so

18 In the discussion below, the optimism means both ex ante and ex post optimism.
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when σ2
η is high, the effect of the unobserved shock on optimism tends to increase in σ2

η . This explains

Part (2), and we can apply the same argument to Part (1). For Part (3), note that γ3 is the coefficient that

determines the degree of inertia in optimism. This inertia comes from the rational confusion of firms

between ξit and (εpit, εuit), which prevents them from fully correcting their optimism. This explains why

γ3 is decreasing in the relative size of σ2
η compared to σ2

p and σ2
u.

Combining the results so far, we can characterizes the dynamics of the output choice as in the next

theorem, which is our first main result.

Theorem 1. The optimal output choice of firms is given by

yijt+1 = ρ2aait−1 + (ρa − ρKγ1)ε
p
it + (ρa + ρKγ2)ε

u
it +Kεpit+1 +Kηit+1 + ργ3KÕit

hence the aggregate output is

yt+1 = ρ2aat−1 + (ρa − ρKγ1)ε
p
t + (ρa + ρKγ2)ε

u
t +Kεpt+1 + ργ3K

∫ 1

0
Õit di.

Thus, the effects of partly-observed shocks (unobserved shocks, respectively) on the next period outcomes

are dampened (amplified, respectively) compared to their effects on the productivity:

∂yt+1

∂εut
>

∂at+1

∂εut
and ∂yt+1

∂εpt
<

∂at+1

∂εpt
.

Compared to the benchmark case in Proposition 1, this theorem establishes that the effect of the

unobserved shock on the next period output is amplified by its effect on the agent’s optimism.19 At

the same time, the effect of the partly-observed shock on the next period output is dampened because

firms become pessimistic after a positive innovation in the partly-observed shock. A contemporaneous

innovation ηit+1 has a positive effect on output because firms cannot fully distinguish it from other

shocks, and its effect decays slowly over time as firms correct their optimism. A special case of interest

is that with ρa = 0 (i.i.d. productivity). In this case, we can observe that optimism propagates the effect

of unobserved shocks to the next period, while the effect of partly-observed shocks is negative in the

next period. Note that shocks in this case cannot affect future output if we assume i.i.d. noise, as in the

19 Recall, however, that we have assumed away the sluggish response of expectations to the innovation in productivity. Thus,
a correct interpretation of this result is that the presence of persistent noise terms amplifies (dampens, respectively) the effect
of unobserved (partly-observed, respectively) shocks compared to the case with i.i.d. noise terms.
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literature. However, with persistent noise, these shocks can affect future output through their effects on

firms’ optimism.

Illustrative Example (Continued). Consider the inflation rate forecaster example again. Suppose the

forecaster predicted an inflation rate of 2% based on her reading of the newspapers. Now suppose that

the actual inflation rate turns out to be 1%. How does her interpretation of the newspaper change? The

fact that the inflation rate turned out to be lower-than-expected leads her to believe that she was too

optimistic in interpreting the contents of the newspapers. So, the forecaster would rationally take this

into account the next time she makes the forecasts, and interpret the contents of the newspapers in a

more pessimistic way.

Implication. The results so far may sound like “anything goes.” Indeed, they imply that a shock can be

either amplified or dampened, depending on how much firms are informed about the shock; i.e., where

a given shock falls on the spectrum of the degree of observability, with fully observed shocks at one

extreme and unobserved shocks at the other.20

There are two ways to overcome this anything goes interpretation. First, we can use forecast data to

measure the degree of observability of a shock of interest, and then our theory disciplines its dynamic

effects. Another way is to assume that the partly-observed shocks are more likely to be idiosyncratic,

while the unobserved shocks are more likely to be common across agents. The assumption that agents

are relatively well informed about idiosyncratic shocks and less informed about aggregate shocks is

often considered plausible in the literature.21 In line with this, we will make an additional assumption.

Assumption 2. Firms make decisions based on noisy information about purely idiosyncratic shocks,

but productivity also depends on aggregate shocks. That is,

– Partly-observed shocks are purely island specific: εpit
iid∼ N

(
0, σ2

p

)
across islands

– Unobserved shocks are common: εuit ≡ εaggrt ∼ N
(
0, σ2

u

)

20 Actually, with rational forecasts, the effect of one shock can be amplified precisely because the effect of another shock is
dampened, and vice versa.

21 For a prominent example, Mackowiak andWiederholt (2009) calibrate their model by matching the price changes observed
in data and conclude that firms pay more attention to idiosyncratic conditions than to aggregate conditions. This is because
idiosyncratic conditions are more volatile than aggregate conditions. The theory of Kohlhas and Walther (2020) also relies on
this asymmetry.
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Under this assumption, partly-observed shocks still lead to rational confusion, but they are averaged

out among the continuum of islands, εpt ≡
∫ 1
0 εpit di = 0. Thus, we can aggregate Proposition 2 and

Theorem 1 as if the aggregate economy were driven only by unobserved shocks.

Corollary 1. Under Assumption 2, the aggregate output and aggregate optimism, Õt =
∫ 1
0 Õit di, follow

yt+1 = ρ2aat−1 + βuε
aggr
t + βOÕt

Õt+1 = γ3ρÕt + ργ2ε
aggr
t

Thus, the aggregate shock has no contemporaneous effect on outcomes, while it has an amplified effect

on the next period outcomes:

∂yt+1

∂εaggrt

>
∂at+1

∂εaggrt

while ∂yt+1

∂εaggrt+1

= 0 <
∂at+1

∂εaggrt+1

.

When firms make decisions based on noisy information about their idiosyncratic shocks while the

economic condition also depends on an aggregate shock, aggregate optimism fluctuates procyclically

with the aggregate shock and thus has an amplified effect on aggregate output after firms receive feedback

on their previous forecasts. In contrast, the aggregate shock has no contemporaneous effect on aggregate

action and forecast. In other words, the aggregate shock that has little effect on contemporaneous

expectations would be amplified later when firms receive feedback. We find suggestive evidence of

this result in Angeletos, Huo, and Sastry (2020). They show that, in response to aggregate shocks,

agents’ expectations underreact initially but overshoot later. They attribute this delayed overreaction to a

combination of dispersed information and behavioral over-extrapolation. However, this finding can also

be well understood using our result; expectations initially underreact due to the fact that agents are not

informed about the aggregate shock—this part is identical to Angeletos, Huo, and Sastry (2020)—and

overshoot later on when they receive feedback and adjust their optimism. It is worth noting that the result

of Corollary 1 does not depend on the exact form of Assumption 2. In Section 5 we obtain a qualitatively

similar delayed overreaction as long as firms are relatively well informed about idiosyncratic shocks.

Remark. We conclude this section by discussing the importance of the interaction between the persistent

noise terms and the presence of feedback in obtaining ourmechanism. Table 2 summarizes the discussion.

First, if the noise terms are i.i.d., then the presence of feedback does not affect the qualitative results.
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Table 2: Interaction Between Persistent Noise and Feedback

Without feedback With feedback

i.i.d. noise No optimism
No optimism
Static learning

Persistent
noise

Higher-than-expected outcome
⇒ pessimism

Higher-than-expected outcome
⇒ optimism

Firms learn nothing ex post, so feedback does not affect firms’ learning. Second, the presence of feedback

is crucial for our mechanism to work. We essentially assume that firms observe two signals, sit and ait,

and that the second signal provides feedback on the forecast made with the first signal. One might think

that the second signal plays a redundant role in the sense that, even if firms only have the first signal, sit,

they can receive feedback from the future signal, sit+1, and learn the persistent noise terms. However,

to formalize our mechanism, it is crucial to incorporate the second signal in the model.22 To see this,

suppose that firms in island i observe only the first signal, sit = ρaait−1+ εpit+ ξit, in each period. Firms

can indeed get feedback on sit when they observe the next period signal, sit+1, since it contains some

information about ξit. However, this feedback gives a result that is exactly the opposite of our previous

intuition; with this feedback, higher-than-expected outcomes make firms pessimistic.23 The reason is

that when firms observe a higher-than-expected signal in period t + 1 due to a positive innovation in

εuit, they partly attribute this surprise to a higher realization of ξit+1, which means that they become

pessimistic. We conclude that what underlies our mechanism is the interaction between persistent noise

terms and the presence of feedback.

4. Strategic Complementarity

In this section, we illustrate how the introduction of strategic complementarity provides additional

insights. With strategic complementarity, firms have incentives to predict the actions of other firms in

different islands. To do so, they try to forecast the optimism of other firms.24 Firms in this model are

concerned not only with the optimism of others (second-order optimism), but also with higher-order

optimism—how other firms think about others’ optimism, how other firms think about others’ beliefs
22 In general, we need another noisy signal about the true realization whose noise term is not much correlated with the first

signal.
23 Acharya, Benhabib, and Huo (2019) document a similar result.
24 This is analogous to the literature on higher-order beliefs, where agents try to forecast beliefs of other agents in order to

forecast others’ actions.
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about others’ optimism, and so on. We first characterize how firms update their higher-order optimism,

and how this higher-order optimism in turn affects firms’ output choices through its effects on higher-

order beliefs about productivity. In particular, the introduction of strategic complementarity and the

resulting higher-order optimism always work in the direction of reinforcing the mechanism we document

in the previous section.

The presence of higher-order optimism makes it difficult to solve the model due to the infinite regress

problem of Townsend (1983), so we make some simplifying assumptions in order to obtain some sharp

analytical results. First, we consider a two-period version of the model where periods are indexed by

t = 0, 1. Second, we assume that productivity is i.i.d. across periods (i.e., ρa = 0), focusing on how

agents learn the noise terms. Third, we assume that the noise terms are time-invariant, which we denote

by ξi without t index, so that agents in island i observe a signal of the form

sit = εpit + ξi

where ξi is independent across islands25

ξi
iid∼ N

(
0, σ2

ξ

)
.

These assumptions are not essential for our results but simplify our exposition. In a numerical exercise

in Section 4.1, we will show that the main message of this section does not rely on these simplifying

assumptions. Last but not least, we assume that islands share one common productivity, which we

denote by at without i index,

at = εpt + εut

Remark. The last assumption of common productivity requires further explanation. Our main goal

in this section is to study the role of strategic complementarity on firms’ learning and optimal output

choices under incomplete information. However, if we assume that εpit is a pure idiosyncratic shock,∫ 1
0 εpit di = 0, then the presence of strategic complementarity not only affects the learning of firms

but also reduces the importance of productivity in choosing output. To see this clearly, consider the

25 We can alternatively allow the possibility that noise terms are positively correlated across agents. Then, agents try to learn
this common component, which can generate additional channel through which underlying shocks affect the (higher-order)
optimism.
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following two static examples, which use the notation of our model but are more similar to Woodford

(2003) and Angeletos and La’O (2009a) in terms of the information structure.

Example 1. There is a continuum of agents i ∈ [0, 1] who share a common fundamental a ∼ N
(
0, σ2

a

)
.

Each agent i chooses an action yi after observing a private signal si = a+ ξi where ξi ∼ N
(
0, σ2

ξ

)
is

i.i.d. across agents. Agents’ best response is assumed to be yi = (1−α)Eiai+αEiy where y =
∫ 1
0 yj dj.

We can show that the equilibrium action is given by

yi =
(1− α)σ2

a

σ2
ξ + (1− α)σ2

a

si and y =
(1− α)σ2

a

σ2
ξ + (1− α)σ2

a

a

Example 2. The only difference from Example 1 is that fundamental ai ∼ N
(
0, σ2

a

)
is i.i.d. across agents,

hence
∫ 1
0 aj dj = 0. In this case, we always have y = 0 and the equilibrium action is given by

yi = (1− α)Eiai =
(1− α)σ2

a

σ2
ξ + σ2

a

si

Thus, even under complete information (σ2
ξ = 0), when fundamental is purely idiosyncratic as in

Example 2, a higher degree of strategic complementarity makes agents less responsive to the change

in fundamental. This comparative static is neither our goal of this section nor the inertia documented

by Woodford (2003) and Angeletos and La’O (2009a). Instead, what these papers document is that, in

Example 1, a higher degree of strategic complementarity makes agents less responsive to the change in

fundamental only when information is incomplete (σ2
ξ > 0). This is because the higher the degree of

strategic complementarity is, the more weight agents put on the common prior. Thus, the role of our last

assumption is that it enables us to isolate the effect of strategic complementarity on firms’ learning.26

As before, all firms observe the realized productivity at at the end of each period, which depends

also on the unobserved shock, εut . Thus, firms in island i have three different information sets

Ωi0 = (si0), Ω̃i1 = (si0, a0), and Ωi1 = (si0, a0, si1).

To introduce strategic complementarity, we depart from Assumption 1 and assume the following.

26We can assume instead that ait = εpit + εut where
∫ 1

0
εpjt dj = 0. In this case, however, a relevant comparative statics is

changing α when agents’ best response is given by yit = Eitait + αEityt.
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Table 3: Timeline

period 0
stage 1

si0 = εp0 + ξi

yi0 = (1− α) · Ei0a0 + α · Ei0y0

Commit to Yij0 andWi0

stage 2 a0 = εp0 + εu0

period 1
stage 1

si1 = εp1 + ξi

yi1 = (1− α) · Ei1a1 + α · Ei1y1

Commit to Yij1 andWi1

stage 2 a1 = εp1 + εu1

Note: The variables in boxes are those observed by agent i. The distribution
of each shock is given by εpt ∼ N

(
0, σ2

p

)
, εut ∼ N (0, σ2

u) and ξi ∼ N
(
0, σ2

ξ

)
.

All the shocks indexed by i are independent across agents. All the shocks
indexed by t are independent across time. All different types of shocks are
independent of each other.

Assumption 3 (Strategic Complementarity). The trade linkage is strong enough to induce strategic

complementarity in output choices across islands: 1/σ > 1.

The inverse of the substitutability between goods from different islands, 1/σ, governs the strength

of a trade linkage. With a strong trade linkage, firms increase their output choices when they expect

others to do so. At the same time, however, the log utility features diminishing marginal utility, which

makes firms decrease their output choices when they expect other firms to increase their output levels.

This is because household is expected to have low marginal utility from consumption, increasing the

equilibrium wage. When Assumption 3 holds, the first effect dominates the second, and the optimal

output choices feature strategic complementarity across islands:

yijt = (1− α)Eit[at] + αEit[yt] where yt =

∫ 1

0
yjt dj

Here, the weight α = 1/σ−1
1/θ+1/σ−1 ∈ (0, 1) is the degree of strategic complementarity and yt is the average

action of other firms. We summarize the timeline of the model in Table 3. We assume that this structure

of the model is common knowledge among all firms and workers.
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Higher-Order Optimism. Onemight argue that there is no point for firms to learn the average optimism

of others because the i.i.d. noise terms of a continuum of firms are averaged out. However, this is not the

case. Firms try to correct their optimism by observing their signals, so their endogenous optimism tend

to move in the same direction. Higher-order optimism is about how firms think about this comovement,

how firms think about others’ beliefs about this comovement, and so on. The literature often assumes

that optimism arises exogenously, and that this optimism is correlated across economic agents in order

for it to affect the economy. However, it is difficult to justify this correlation if we are silent about the

origin of optimism. Our paper provides the answer: optimism is correlated across agents because they

observe the same economic outcomes.

Now we formally define the higher-order optimism. Recall that we define the optimism of a firm

in island i at time t as the extent to which this firm underestimates its noise term, ξit. Likewise, from

a firm’s perspective, other firms in different islands are expected to be optimistic in interpreting their

signals if they are expected to underestimate their noise terms. As we consider an environment with

strategic complementarity, we can call it the firm’s optimism about others’ optimism or the second-order

optimism. We proceed in a similar manner to define (ex-post) higher-order optimism.27

Definition 4. The ex-post hth-order optimism of firms in island i is defined recursively by

Oh
it ≡ E

[∫ 1

0
Oh−1

jt dj
∣∣∣Ωit

]
, h = 2, 3, 4, · · · where O1

it ≡ Oit.

We also define the average ex-post higher-order optimism by

Oh
t =

∫ 1

0
Oh

jt dj.

Equipped with this definition, we will now solve for the equilibrium. It is well known that the

period-0 equilibrium is unique.

Lemma 6. In period 0, there is a unique equilibrium, in which firms choose

yi0 = θ · si0 where θ =
(1−α)σ2

p

(1−α)σ2
p+σ2

ξ
∈ (0, 1)

27We can use ex-ante higher-order optimism instead, which is defined analogously. It turns out that ex-post higher-order
optimism, however, is much easier to keep track of under the presence of strategic complementarity, so we focus only on
ex-post ones in this section.
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and hence the aggregate output is y0 = θ · εp0.

For a given value of α, high σ2
p or low σ2

ξ implies that signals are more informative about productivity.

Firms then respond more to their signals. All else equal, the degree of strategic complementarity α

reduces θ because it makes agents put more weight on higher-order beliefs, which are more anchored in

their mean-zero prior.

What we are interested in, however, is not the period-0 equilibrium.28 Our focus is on how firms

learn their own and others’ noise terms and how this learning changes the effect of period-0 shocks on

period-1 outcomes. Note that we can characterize the period-1 equilibrium without calculating firms’

higher-order optimism or higher-order beliefs about the fundamental. Starting with a guess of a linear

equilibrium, we can compute first-order beliefs about the endogenous aggregate output y1, which gives

the updated linear best response. The fixed point of this guess-and-verify process gives a unique linear

equilibrium for period 1. The result is summarized in Lemma 7, which corresponds to Theorem 1 for

the case with strategic complementarity.

Lemma 7. In period 1, there is a unique linear equilibrium in which the equilibrium output is given

by29

y1 = γpε
p
0 + γuε

u
0 + γ′pε

p
1

where

γp = − σ2
u σ2

ξ

(1−α)σ2
p σ2

u+σ2
p σ2

ξ+2σ2
u σ2

ξ

γu =
σ2
p σ2

ξ

(1−α)σ2
p σ2

u+σ2
p σ2

ξ+2σ2
u σ2

ξ

γ′p =
(1−α)σ2

p σ2
u+σ2

p σ2
ξ+σ2

u σ2
ξ

(1−α)σ2
p σ2

u+σ2
p σ2

ξ+2σ2
u σ2

ξ
,

so γu > 0 > γp and γ′p ∈ (0, 1).

This lemma shows that the intuition of the previous section is extended to a model with strategic

complementarity: Unobserved shocks are propagated to period 1 (γu > 0), while partly-observed shocks

have negative effects on period-1 outcomes (γp < 0). A natural question that follows is whether the

strategic complementarity and resulting higher-order optimism strengthen or weaken our mechanism.

28 Actually, we do not even need to solve the period-0 equilibrium.
29 The results below show that this is a unique equilibrium even if we allow for the possibility of a nonlinear equilibrium.
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In order to answer this question and to fully understand the period-1 equilibrium, we need to keep

track of higher-order optimism and its effects on higher-order beliefs about the productivity. We first

characterize the (ex-post) higher-order optimism in Lemma 8.

Lemma 8. After observing (si0, a0, si1)
′, higher-order optimism of firms in island i is given by

Oi1 ≡ ξi − Ei1[ξi] = Q
(
εp0 ξi εu0 εp1

)′
Oh

i1 ≡ Ei1

[∫ 1

0
Oh−1

j1 dj

]
= QT h−1

(
εp0 ξi εu0 εp1

)′
for some matrices Q

1×4
and T

4×4
, where the sign of each element is

Q =
(
− + + −

)
and QT h−1 =

(
− − + −

)
.

For future reference, we also note that the second element of Q, Q1,2, is decreasing in σ2
ξ and increasing

in σ2
p and σ2

u.

First of all, the first-order optimism is increasing in ξi (see the sign of the second element of Q)

because firms are unable to fully identify an increase in ξi as they rationally confuse it with changes in

εp0 and εu0 . It is then immediate that Q1,2 is decreasing in σ2
ξ and increasing in σ2

p and σ2
u as in Part (3) of

Lemma 5.

Second, the first-order optimism is decreasing in εp0 and increasing in εu0 as in the previous section

(see the first and third elements of Q). More importantly, higher-order optimism always moves in the

same direction as the first-order optimism in response to εp0 and εu0 (see the signs of the first and third

elements of QT h−1). To understand this, consider a firm in the average island i in the sense that ξi = 0.

Suppose that there is a positive unit innovation in εu0 and that all other aggregate shocks remain zero.

Then, a firm in the island iwill observe higher-than-expected fundamental a0 so her first-order optimism

will be positive,

Oi1 = −Ei1[ξi] > 0.

Since noise terms are symmetrically distributed around 0, this inequality means that she expects that the

noise terms of other islands are on average Oi1 units higher than her noise term. This in turn means that

the first-order optimism of firms in other islands are on averageOi1 ·Q1,2 units higher than her first-order

optimism. At the same time, from her perspective, she is the one who is expected to have zero optimism
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(i.e., Ei1[Oi1] = 0). Thus, we can conclude that her second-order optimism is given by O2
i1 = Oi1 ·Q1,2.

This explains why the second-order optimism moves in the same direction as the first-order optimism

in response to εu0 . In other words, firms who view a0 as higher-than-expected will on average think

that firms in other islands are likely to have higher noise terms than theirs, thereby being optimistic on

average. Similar reasoning can be recursively applied to show that all the higher-order optimism is given

by Oh
i1 = Oi1 ·Qh−1

1,2 , which also moves in the same direction. We can similarly see that higher-order

optimism also moves in the same direction as the first-order optimism in response to εp0.

A final observation is that, even though we start with the assumption that noise terms are i.i.d., the

fact that agents try to correct their optimism by observing their signals makes their optimism comove,

which generates non-trivial average higher-order optimism, as we claimed before.

Next question is why this higher-order optimism is important. How does it affect the outcome in

period 1? We characterize the role of higher-order optimism in Lemma 9 and Corollary 2.

Lemma 9. Higher-order beliefs can be written as functions of εp1 and cumulative sums of higher-order

optimism:

Ei1Ēh−1
1 [a1] = εp1 +Oi1 +O2

i1 + · · ·+Oh
i1 (with Ei1a1 = εp1 +Oi1)

Ēh
1 [a1] = εp1 +O1 +O2

1 + · · ·+Oh
1

where we write Ē1[·] =
∫ 1
0 Ei1[·] di and Ēh

1 [·] =
∫ 1
0 Ei1Ēh−1

1 [·] di.

Corollary 2. The aggregate output in period 1 is a weighted average of higher-order beliefs, and hence

is a weighted sum of higher-order optimism:

y1 =
∞∑
h=1

(1− α)αh−1Ēh
1 [a1]

= εp1 +
∞∑
h=1

αh−1Oh
1 . (6)

It is well known that aggregate output is determined by higher-order beliefs. Thus, Lemma 9 naturally

leads to Corollary 2. In Lemma 8, we characterize how underlying shocks affect higher-order optimism,

which in conjunction with Corollary 2 characterizes how underlying shocks affect aggregate output in

period 1. This essentially gives the equivalent result of Lemma 7, but we have tracked higher-order
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optimism and higher-order beliefs to understand the mechanism behind it. We are now ready to answer

the main question of this section: do strategic complementarity and the resulting higher-order optimism

strengthen or weaken our mechanism?

With α = 0, we return to the case without strategic complementarity where we have y1 = εp1 +O1.

With α > 0, we have additional higher-order optimism terms in equation (6). In Lemma 8, we saw that

these additional terms move in the same direction as first-order optimism. Thus, we can conclude that

the presence of strategic complementarity and the resulting higher-order optimism always strengthen

our mechanism relative to the case without strategic complementarity. In other words, when agents

observe higher-than-expected outcomes, they become optimistic not only about their signals (first-order

optimism) but also about others’ optimism (higher-order optimism). Furthermore, higher α means

higher coefficients on the first-order and higher-order optimism terms in equation (6). Therefore, the

response of y1 to the underlying shocks εp0 and εu0 is even higher when we have stronger strategic

complementarity. This discussion is summarized in the following theorem, which is our second main

result.

Theorem 2. The effects of period-0 shocks on period-1 outcome are increasing in the degree of strategic

complementarity:30
∂

∂α

(
∂y1
∂εu0

)
> 0 and ∂

∂α

∣∣∣∣∂y1∂εp0

∣∣∣∣ > 0.

Thus, the strategic complementarity and the resulting higher-order optimism always strengthen the

amplification and dampening we documented in Section 3.

Remark. This theorem is in stark contrast to the results in Woodford (2003), Morris and Shin (2002),

and Angeletos and Pavan (2007), which instead document that the higher the degree of strategic

complementarity is, the less responsive the agents are to underlying shocks. This can be clearly seen in

Example 1 where we have ∂
∂α

(
∂y
∂a

)
< 0. This is because higher strategic complementarity implies that

the equilibrium actions of agents are more anchored to the common prior, so agents are less responsive

to contemporaneous shocks. In our model, however, optimistic agents are on average expect that others

are more optimistic than they are, so higher strategic complementarity makes agents more responsive to

period 0 shocks.

30 Recall that ∂Oh
1

∂εu0
is positive while ∂Oh

1

∂ε
p
0
is negative for all orders h.
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Figure 2. Effects of a Unit Increase in Partly-observed Shocks

We can illustrate our findings using a parametrized example. We set σ2
u = σ2

ξ = 1 for the variance of

the unobserved shock and noise terms, and σ2
p = 2 for the variance of the partly-observed shock.31 We

then change the degree of strategic complementarity α from 0 to 1. Figure 1 corresponds to unobserved

shocks εu0 and Figure 2 to partly-observed shocks ε
p
0. These figures clearly illustrate our findings:

(i) higher-order optimism moves in the same direction as the first-order optimism (Lemma 8), (ii)

higher-order beliefs are cumulative sums of higher-order optimism (Lemma 9), and (iii) the effects of

underlying shocks are increasing in α (Theorem 2).

We conclude this section with comparative statics. We have seen so far that higher-order optimism

determines higher-order beliefs, which in turn determine outcomes. Thus, we can focus on how the

values of underlying parameters change the effects of shocks on higher-order optimism. The results are

summarized in the following lemma.
31We set σ2

p higher than σ2
u according to the notion that agents are more concerned about volatile shocks; see footnote 21.
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Lemma 10. The effect of the period-0 unobserved shock on higher-order optimism, ∂Oh
i1/∂ε

u
0 , is

(i) Increasing in σ2
p

(ii) Decreasing in σ2
u if h is low (e.g., h = 1), while increasing in σ2

u if h is sufficiently high

(iii) Increasing in σ2
ξ if h is low (e.g., h = 1), while decreasing in σ2

ξ if h is sufficiently high.

Similarly, the effect of period-0 partly-observed shock on higher-order optimism,
∣∣∂Oh

i1/∂ε
p
0

∣∣ is

(i) Increasing in σ2
u

(ii) Decreasing in σ2
p if h is low (e.g., h = 1), while increasing in σ2

p if h is sufficiently high

(iii) Increasing in σ2
ξ if h is low (e.g., h = 1), while decreasing in σ2

ξ if h is sufficiently high.

Recall that we prove in Lemma 5 that the effect of the unobserved shock is increasing in the variance

of the partly-observed shock and noise terms while decreasing in the variance of the unobserved shock.

This explains the first part of Lemma 10 for the first-order optimism (h = 1). For comparative statics for

higher-order optimism, we discussed in Lemma 8 that the effect of the unobserved shock on higher-order

optimism can be decomposed into32

∂Oh
i1

∂εu0
=

∂Oi1

∂εu0
·Qh−1

1,2 .

The first term reflects the fact that higher-order optimism increases precisely because the first-order

optimism increases. In addition, for a given increase in the first-order optimism, the second term

determines the increase in higher-order optimism. Recall that this second term is increasing in both

σ2
p and σ2

u and decreasing in σ2
ξ . Why do we have different comparative statics for the first and second

terms? Lemma 8 tells us that the first term originates from firm i’s rational confusion between εu0 and

(εp0, ξi), while the second term is originated from other firms’ rational confusion between their noise

terms and (εp0, εu0 ). Thus, the first term is decreasing in the relative variance of εu0 , and the second term

is decreasing in the relative variance of ξi. If h is low, then the effect of variance parameters on the first

term dominates that on the second term so that hth-order optimism has the same comparative statics as

the first-order optimism. On the other hand, for sufficiently high h, the effect of variance on the second

32 Recall that we considered a unit innovation in εu0 , so we can interpret Oh
i1 there as

∂Oh
i1

∂εu0
.
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Figure 3. Comparative Statics with Respect to Variance

term dominates that on the first term and hth-order optimism is increasing in σ2
p and σ2

u and decreasing

in σ2
ξ . This explains the first part of Lemma 10, and we can apply the same argument for the second part.

Figure 3 illustrates the results. We use the same parameter values as in the previous numerical exercise

and change the value of each variance one by one. We then calculate the effects of underlying shocks

on higher-order optimism.

The aggregate output in period 1 is a function of all orders of optimism, and variance parameters,

σ2
p, σ

2
u, σ

2
ξ , can have different effects depending on the order of optimism. Lemma 11, however, shows

that the effects on the first-term above always dominate the effects on the second term when it comes to

the aggregate output.

Lemma 11. The effect of period-0 unobserved shocks on the period-1 aggregate outcome y1 is (i)

increasing in σ2
p, (ii) decreasing in σ2

u, and (iii) increasing in σ2
ξ . Likewise, the effect of period-0

partly-observed shocks on the period-1 outcome is (i) increasing in σ2
u, (ii) decreasing in σ2

p, and (iii)

increasing in σ2
ξ .

To sum up, the presence of strategic complementarity and the resulting higher-order optimism

strengthen our mechanism as a result of two facts: Higher-order beliefs are cumulative sums of higher-

order optimism, and higher-order optimism always move in the same direction as the first-order optimism

in response to underlying shocks.

4.1 Numerical Exercise: Infinite Period with Strategic Complementarity

In this section, we discuss the robustness of the results in Section 4. We relax the restrictive two-period

assumptions and instead assume infinite periods. In order to prevent firms from fully learning their
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noise terms, we assume as in Section 3 that noise terms follow an AR(1) process with ρ ∈ (0, 1) and

σ2
η > 0. Except for these two assumptions, the model is the same as in Section 4.

We utilize the method of Woodford (2003) to solve for the equilibrium dynamics of the aggregate

output; see Appendix B for details. We use the same parameters as in Section 4 with σ2
η = 0.5 and

ρ = 0.9 and numerically calculate the trajectory of the economy after innovations in the underlying

shocks. These parameters are arbitrary, but they are neither implausible nor qualitatively essential for the

results below. Figure 4 plots the impulse responses of aggregate output to positive innovations in partly-

observed and unobserved shocks. Figure 4a corresponds to the case without strategic complementarity,

and Figure 4b corresponds to the case with strategic complementarity.

We can see that Lemma 7 continues to hold in this infinite horizon model: unobserved shocks are

propagated to period 1, while partly-observed shocks have negative effects on the next period outcome.
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Also, comparing Figure 4a and Figure 4b, the effect of α is in line with Theorem 2: with higher degree

of strategic complementarity, we seem to have stronger effects of period-t shocks on the period-(t+ 1)

outcome. However, if we plot ∂yt+1

∂εut
and ∂yt+1

∂εpt
as a function of α in Figure 5a, then it turns out that this is

not the case for very high values of α. In particular, both vanish as α converges to one. Does this mean

that the intuition we obtain in the previous section is wrong? The answer is no. Note that the importance

of underlying shocks goes to zero as α goes to 1, which can be clearly seen by limα→1
∂yt
∂εpt

= 0. For

sufficiently high α, this force is dominant, so that the effects of period-t shocks on the period-(t + 1)

output also go to zero. In Figure 5b, we plot the relative size of ∂yt+1

∂εut
and ∂yt+1

∂εpt
compared to ∂yt

∂εpt
. We

can observe that these relative effects are indeed increasing in the degree of strategic complementarity,

which is indeed in line with the result of Theorem 2. In this sense, we can conclude that the main

message of Section 4 does not rely on its simplifying assumptions.

5. Implication on Forecast Survey Data

What is the empirical content of our model? In this section, we consider an abstract version of the

model in Section 3, in which ait can be interpreted as any fundamental of interest. In Section 5.1, we

first illustrate how this model provides an alternative interpretation of the survey data, while explaining

the prominent empirical findings in the literature in a unified way. In Section 5.2, we show that the gap

between consensus-level and individual-level overextrapolation helps distinguish our rational theory

of overextrapolation from other behavioral theories. This result is reminiscent of Angeletos, Huo,

and Sastry’s (2020) finding that the gap between consensus-level underreaction and individual-level

overreaction speaks to the role of information frictions.

Model. As in Section 3, the fundamental follows an AR(1) process ait+1 = ρaait + εpit+1 + εuit+1, and

agents observe signals sit+1 = ρaait + εpit+1 + ηit+1. Thus, the optimism follows the law of motion

Õit+1 = ργ3Õit − ργ1ε
p
it + ργ2ε

u
it + ηit+1. The forecast is then given by Eit[ait] = ρ2aait−2 + (ρa −

ρKγ1)ε
p
it−1 + (ρa + ρKγ2)ε

u
it−1 +Kεpit +Kηit + ργ3KÕit−1. Note that our timing convention implies

that when agent i makes a forecast in period t, her information set Ωit = (·, sit−2, ait−2, sit−1, ait−1, sit)

does not contain the realized fundamental ait. Literature, however, often assumes that ait is contained

in the period-t information set, so we introduce a notation to make our results comparable to the
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literature: Fit[·] ≡ Ẽit+1[·] = E
[
· | (· · ·, sit−2, ait−2, sit−1, ait−1, sit, ait)

]
.We denote aggregate variables

by either omitting i-index or using a bar over variables: xt =
∫
xit di for x ∈ {a, εp, εu, Õ}, Eitait+k =∫ 1

0 Ejtajt+k dj, and Fitait+k =
∫ 1
0 Fjtajt+k dj. We write σ2

p = Var(εpit), σ2
u = Var(εuit), σ̄2

p = Var(εpt )

and σ̄2
u = Var(εut ). Note that we always have σ̄2

p ≤ σ2
p and σ̄2

u ≤ σ2
u since the shocks may have

idiosyncratic components which are canceled out when we aggregate them. This means that the degrees

of commonality defined below are always less than or equal to one.

Definition 5. We define the degrees of commonality of the partly-observed and unobserved shocks as

Cp =
σ̄2
p

σ2
p

and Cu =
σ̄2
u

σ2
u

, respectively.

On the one hand, if a shock is fully idiosyncratic and hence always take zero value when we integrate

it across agents, the degree of commonality is zero. On the other hand, if a shock is common then the

degree of commonality is one. The relative size of Cp and Cu plays a central role in Section 5.1. A

special case is when agents share a common fundamental at, such as the inflation rate of the economy

or GDP growth. This necessarily implies Cp = Cu = 1. But, in the real world, even for such a common

fundamental, forecast data can be better interpreted by a model with idiosyncratic fundamentals. To

illustrate this, consider forecasters who form expectations about the US output growth. They have their

own ways to view the US output growth, ait, which is not necessarily the same as the true US output

growth, at, even if it is unbiased,
∫ 1
0 ait di = at. If this is the case, the feedback these forecasters receive

is likely to be also in terms of their view of the US output growth, ait, not in terms of the true US output

growth, at. Thus, we assume hereafter that Cp and Cu are not necessarily equal to one even when we

consider common fundamentals.

5.1 Empirical Findings in the Literature

Many empirical papers use panel survey data to measure agents’ expectations directly. These papers

often assume that forecasters do not observe past realizations, even ex post, and dynamically learn

fundamentals from signals. This assumption is necessary because observing past realizations makes

learning essentially static in their settings and makes it difficult to explain the dynamic pattern of forecast

data. The literature often relies on rational inattention to justify this assumption. But, it is unlikely that

forecasters who made a prediction for a variable do not pay close attention to the realized value of it.
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This paper gives a totally different way of interpreting dynamic forecast data. This paper views

the same survey data as outputs of dynamic learning by forecasters, who can observe the past inflarion

rates but are trying to learn how to interpret their own information; i.e., noise terms. Our model

allows forecasters to observe past realizations ex post, while still being able to explain several empirical

findings that have been explained using standard models. In this section, we first illustrate how our

model explains the prominent empirical findings in the literature in a unified way. In particular, we

consider the empirical findings of Coibion and Gorodnichenko (2015) (hereafter, CG), Kohlhas and

Walther (2020) (hereafter, KW), and Angeletos, Huo, and Sastry (2020) (hereafter, AHS).

Coibion and Gorodnichenko (2015). We start with the finding of CG. They demonstrate the underre-

action of the consensus forecast by showing that forecast errors are positively correlated with forecast

revisions. They run the following regression

ait+k − Eitait+k = αi + δ(Eitait+k − Eit−1ait+k) + errorit

and obtain a positive coefficient estimate, δ̂ > 0. They explain this by the gradual adjustment of average

forecasts. The same result can be obtained in our model, but here it is based instead on the gradual

adjustment of average optimism.

Proposition 3. In our model, there exists a threshold λ ∈ (0, 1) such that Cp
Cu > λ implies

Cov(ait+k − Eitait+k,Eitait+k − Eit−1ait+k) > 0, for k ≥ 1,

This means that, unless partly observed shocks are mostly averaged out, we can obtain the underre-

action of the consensus forecast as in CG.

Kohlhas and Walther (2020). KW show the coexistence of underreaction to new information and

overextrapolation from recent realizations of the forecasted variable. The evidence for underreaction

is the same as in CG, while for overextrapolation, they run the following regression for US output

growth:33

at+k − Eit+1ait+k = α+ γat + errort

33 Their original specification has at+k − Ētat+k on the left hand side. Under their timing convention, however, at is in the
agents’ information set when they form the expectation about at+k; so it should be Ēt+1at+k under our timing convention.
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and obtain a negative coefficient estimate, γ̂ < 0. This directly implies that consensus forecast features

overextrapolation to the recent realization. They show that this can happen if rational agents pay more

attention to procyclical components of the variable. A simpler explanation is based on a behavioral

overextrapolation model in which agents’ perceived persistence of the output growth is higher than

the true persistence. In the next proposition, we will argue that we can obtain the same result using

our model, in which agents overextrapolate to recent realizations because of the endogenous change in

optimism.

Proposition 4. Suppose that agents in our model are relatively well informed about idiosyncratic

components of shocks in the sense that Cp < Cu. Then, we have

Cov(at+k − Eit+1ait+k, at) < 0, for k ≥ 1.

Also note that the contemporaneous effect of at on the forecast error is positive:

Cov(at+k − Eitait+k, at) > 0.

As discussed in Assumption 2, it is often assumed in the literature that agents are relatively well

informed about idiosyncratic shocks. First, idiosyncratic shocks are more agent-specific, hence, it

is easier to get information about them. Also, idiosyncratic shocks are likely to be more volatile

than the aggregate shocks. Agents thus rationally pay more attention to the idiosyncratic shocks.

This necessarily implies Cp < Cu. The first part of Proposition 4 says that our model predicts the

finding of KW under this condition. The second part says that there is a reversal of covariance,

Cov(at+k − Eit+1ait+k, at) < 0 < Cov(at+k − Eitait+k, at). This is reminiscent of Theorem 1, which

states that a component that does not affect the period-t expectation has a larger effect on the period-

(t+ 1) expectation. This combination of overextrapolation and information friction is essential in many

papers in the literature to explain the finding of KW. AHS explain it with the combination of behavioral

overextrapolation and information friction. Our model and the model of KW essentially embed rational

mechanisms of overextrapolation—persistent noise and feedback in our model and asymmetric attention

in KW—into information friction models.
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Angeletos, Huo, and Sastry (2020). AHS document delayed overreaction of consensus forecasts—

consensus forecasts initially underreact and overshoot later on. This finding is consistent with their

model, which combines incomplete information and behavioral over-extrapolation. Since my model

provides a rational theory of the overextrapolation of consensus forecasts, we can obtain the same result.

In our model, expectations initially underreact due to incomplete information and overshoot later on

when agents receive feedback.34

5.2 Distinguish the Rational Theory from Behavioral Theories

Not only our model but also many behavioral theories of overextrapolation can obtain Proposition 4.

Moreover, asAHSpointed out, these theories, combinedwith information friction, can potentially explain

Proposition 3 as well. How can we test our model against other behavioral overextrpolation models?

Smoking gun evidence comes from exploiting the difference between the degree of overextrapolation in

consensus and individual forecasts. For example, consider the following two regressions.

at+1 − Eit+1ait+1 = β0 + βaggrat + errort+1 (7)

ait+1 − Eit+1ait+1 = β0 + βindait + errorit+1 (8)

Because ait is contained in agent i’s information set, our model can only generate overextrapolation

at the consensus level, whereas in Proposition 5 we show that behavioral theories necessarily have the

same coefficient for both regression specifications. We can compare the estimated coefficients of these

regressions to distinguish our rational theory from behavioral theories.35

Proposition 5. Suppose that the fundamental follows an AR(1) process

ait = ρaait−1 + εit

34 They also show that behavioral over-extrapolation—misspecification in the stochastic process of fundamental—leads to
the overreaction of individual forecasts as documented in Bordalo et al. (2020). Similarly, in our model, the misspecification
in the stochastic process of noise terms leads to overreaction of individual forecasts. In particular, Proposition A.1 states that
when the perceived persistence of noise is greater than the true persistence, individual forecast errors are negatively correlated
with forecast revisions, implying the individual-level overreaction.

35 Consider an extended version of KW model with individual-specific fundamental. Agent i has the fundamental
yit =

∑
j xijt, where j-th component is determined by xijt = ajθit + uijt where θit denotes a latent factor that follows an

AR(1) process, θit = ρaθit−1 + ηit. Agent i observes noisy signals sijt = xijt + εijt. The shocks uijt, ηit, and εijt are
normally distributed, serially uncorrelated, and mutually independent. In this model, we have β̂aggr < β̂ind if and only if
Var(

∫
uijt di)

Var(uijt)
>

Var(
∫
ηit di)

Var(ηit)
. But there is no reason to expect β̂ind = 0.
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and agents receive signals about the fundamental with normally distributed noise terms

sit = ait + ηit.

Consider the following three theories with behavioral elements

– Extrapolation: Agents observe ait (i.e., Var(ηit) = 0) when they form expectations about ait+1, but

perceived AR(1) coefficient ρ̂a is higher than the true one, ρa. We writeEit+1[·] = E[·| · · · , ait−1, ait].

– AHS: Perceived AR(1) coefficient, ρ̂a, is higher than the true one, ρa, and perceived precision of sit

is higher than the true one.

– Diagnostic expectation: Eitai,t+k = Erational
it−1 ai,t+k + gk(sit − Erational

it−1 ait) with gk > K · ρk where

K is the Kalman gain.

We always have

β̂aggr = β̂ind.

In our model, suppose again that agents are relatively well informed about idiosyncratic components of

shocks in the sense that Cp < Cu. Then, we have

β̂aggr < 0 and β̂ind = 0.

Gennaioli, Ma, and Shleifer (2016) report both β̂aggr and β̂ind for CFOs’ and analysts’ expectations

on earnings growth, which is copied in Table 4, although their focus is not on comparing the coefficients.

The coefficients in panel (A) correspond to β̂aggr, and those in panel (B) correspond to β̂ind. We can

make two observations. First, analysts expectations feature a pattern consistent with Proposition 5; i.e.,

β̂aggr < 0 and β̂ind ≈ 0. Second, CFOs expectations give higher extrapolation both at the consensus

level and at the individual level. But the differences between two are approximately the same. These two

observations are suggestive of the interpretation that analysts expectations are approximately rational but

overextrapolate from past realizations once we aggregate them to consensus expectations, and that CFOs

expectations are additionally subject to behavioral overextrapolation.36 It is difficult, however, to formally

map these estimates to the coefficients β̂aggr and β̂ind in Proposition 5 because Gennaioli, Ma, and
36 Another interesting observation is that the differences between coefficients, β̂aggr − β̂ind, which measure the extra

overextrapolation in the consensus forecasts, are almost identical for analyst expectation and CFO expectation.
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Table 4: Tables 8 and 9 of Gennaioli, Ma, and Shleifer (2016)

A. Aggregate Evidence

Realized − Expected
Next 12m Earnings Growth

(1)
Analyst

(2)
CFO

Past 12m
earnings/asset (%)

−0.0456

(−3.68)

−0.0881

(−6.48)

Observations 106 57

B. Firm-Level Evidence

Realized − Expected
Next 12m Earnings Growth

(1)
Analyst

(2)
CFO

Past 12m
earnings/asset (%)

−0.0080

(−7.43)

−0.0511

(−5.14)

Firm fixed effects Y Y

Observations 103,930 606

Notes: In panel (A), the dependent variable is aggregate earnings
growth in the next 12 months minus aggregate expectations of
earnings growth in the next 12 months. Independent variables
include aggregate earnings/asset in the four quarters prior to quarter
t− 1. In panel (B), the dependent variable is firm-level earnings
growth in the next 12monthsminus expectations of earnings growth
in the next 12 months. Independent variables include firm-level
earnings/asset in the four quarters prior to quarter t−1. t-statistics
in parentheses. See Gennaioli, Ma, and Shleifer (2016) for details.

Shleifer (2016) regress forecast errors of earning growth on past earnings per asset, not on past earnings

growth. Thus, we redo their estimation using past earnings growth as independent variables. One should

be cautious when choosing the length of time periods because our theory essentially implies initial

underextrapolation and overextrapolation later on (See Proposition 4). Suppose that ait denotes firm-

level earning growth over one year starting from time t. We experiment with various values of the length

of time periods between t and t+ 1, from four quarters (i = 4) to twelve quarters (i = 12).37 Figure 6

shows the estimated coefficients of the regression specifications (7) and (8). Reassuringly, this again

features a pattern consistent with Proposition 5 for intermediate values of i, 7 ≤ i ≤ 11.

37 Because ait denotes yearly earnings growth, we set i ≥ 4 to ensure that there is no overlap between ait and ait+1.
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(b) Firm-Level Evidence: β̂ind

Figure 6. Overextrapolation in Analyst Expectations

Notes: This figure plots the estimated coefficients of specifications (7) and (8). We vary the length of a unit time
period, from four quarters (i = 4) to twelve quarters (i = 12).

Remark. The experience effects are studied by Malmendier and Nagel (2011, 2016) and subsequent

papers. Recent evidence suggests longlasting effects of past personal experiences on expectations and

behaviors. For example, personal lifetime experiences in the stock market affect future stock market

investment behavior. This is inconsistent with traditional economic models, in which there is no

difference between personally experiencing an event and hearing about it. The literature on experience

effects emphasizes the longlasting neuropsychology effects as a key mechanism. The following corollary

provides a natural explanation of experience effects through the lens of our model.

Corollary 3. In our model, suppose again that agents are relatively well informed about idiosyncratic

components of shocks in the sense that Cp < Cu. Then, when we run the following regression

ait+1 − Eit+1ait+1 = β0 + β̃aggrat + ẽrrorit+1,

we have ̂̃
βaggr = β̂aggr < 0.

Suppose you have experienced large negative stock market returns, at < 0. Then Corollary 3

implies that you become pessimistic about the stock market, ait+1 − Eit+1ait+1 > 0, being less likely

to participate in it. Moreover, expectations adjust only for those who experience this negative shock,

because this overextrapolation arises from agents evaluating their previous forecasts based on the

44



feedback they receive. Those who only hear about the negative shock have not had a chance to make a

prediction, so they would not show overextrapolative behavior. In other words, our model provides a

novel reason why the cognitive process of making a prediction and evaluating it affects the formation of

future expectations.

6. Conclusion

We begin with two observations. First, noise in agents’ signals is likely to be persistent regardless of its

real-world counterpart. Second, in the real world, agents receive feedback on their past forecasts. With

persistent noise and feedback, agents try to learn about the noise in their signals and the noise of others,

and optimism arises endogenously. With this additional channel of learning, feedback on previous

forecasts affects expectations about the noise, and shocks with different degrees of observability have

different effects on the dynamics of aggregate outcomes through their different effects on optimism. We

obtain a novel mechanism by which rational agents become overoptimistic after observing higher-than-

expected outcomes of the economy, and this optimism amplifies/propagates the underlying shocks. Here,

optimism is not only about one’s own signals but also about others’ optimism when there is strategic

complementarity. Our model gives us a new way to interpret forecast dynamics in survey data—learning

how to interpret information rather than learning fundamentals. This interpretation is consistent with

many empirical findings in the literature.
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Appendix

A. Proofs for Sections 2–4

Proof of Lemma 1. Signals of the form st = at + σ · ξ̃t give a strictly positive object function unless σ = 0,

which violates the information constraint. Consider a signal of the form st = at + σ · ξ̃ where σ is

sufficiently high to satisfy the information constraint. Since we know unconditional distribution of at,

with an infinite number of realizations of st, we can exactly learn the realization of ξ̃, thereby having

E[at|st] = at for all t.

Proof of Lemma 2. We have

(
1− 1

η
− 1

θ

)
yijt = Eit

[
−1

η
yt + γyt −

1

θ
ait + (1− σ

η
)
1

σ
(yijt − yt)

]

or (
1− 1

σ
− 1

θ

)
yijt = Eit

[(
γ − 1

σ

)
yt −

1

θ
ait

]
or equivalently

yijt =

(
1

θ
+

1

σ
− 1

)−1

Eit

[
1

θ
ait +

(
1

σ
− γ

)
yt

]
≡ Eit[(1− α)ãit + αyt]

which gives the desired result.

Proof of Proposition 1. Although we can prove this directly, this result can be seen as a special case of

Theorem 1 with ρ = 0.

Proof of Lemma 3. Right before observing sit, we have ξit−1|Ω̃it ∼ N (mit−1, Vt−1), hence

ξit|Ω̃it ∼ N
(
ρmit−1, ρ

2Vt−1 + (1− ρ2)σ2
η

)
.
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On the other hand, the prior belief of ãit ≡ ρaait−1 + εpit is N
(
ρaait−1, σ

2
p

)
. Thus, Bayesian updating

gives

Eit[ait] = Eit[ãit] = ρa · ait−1 +Kt(sit − ρaait−1 − ρmit−1)

where Kt =
σ2
p

ρ2Vt−1+(1−ρ2)σ2
η+σ2

p
∈ (0, 1). Also note that

sit − ρaait−1 − ρmit−1 = εpit + ξit − ρmit−1 = εpit + Õit.

Finally, we have

Eit[ait] = Eit[ãit] = Eit[sit − ξit] = sit − Eit[ξit] = ρaait−1 + εpit +Oit.

Proof of Lemma 4. Consider the following state-space representation.

xt ≡

(
ãit

ξit

)
∼ N

((
ρaait−1

ρmt−1

)
,

(
σ2
p 0

0 ρ2Vt−1 + (1− ρ2)σ2
η

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Σ

)

yt ≡

(
sit

ait

)
=

(
1 1

1 0

)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

G

xt +

(
0

eut

)

The Kalman filter gives

xt|yt ∼ N

((
ρaait−1

ρmt−1

)
+K

(
yt −G

(
ρaait−1

ρmt−1

))
,KRK ′ + (I −KG)Σ(I −KG)′

)

where K = ΣG′(GΣG + R)−1 and R = Var

(
0

εut

)
=

(
0 0

0 σ2
u

)
. This gives ξit|Ω̃it+1 ∼ N (mit, Vt)

with

mit = (γ1 + γ2)sit + γ3ρmit−1 − ρ1ρaait−1 − γ2ait

Vt = γ3(ρ
2Vt−1 + (1− ρ2)σ2

η)
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where

γ1 =
σ2
u(ρ

2Vt−1 + (1− ρ2)σ2
η)

(σ2
p + σ2

u)(ρ
2Vt−1 + (1− ρ2)σ2

η) + σ2
pσ

2
u

γ2 =
σ2
p(ρ

2Vt−1 + (1− ρ2)σ2
η)

(σ2
p + σ2

u)(ρ
2Vt−1 + (1− ρ2)σ2

η) + σ2
pσ

2
u

γ3 =
σ2
pσ

2
u

(σ2
p + σ2

u)(ρ
2Vt−1 + (1− ρ2)σ2

η) + σ2
pσ

2
u

Thus, γ1, γ2, γ3 ∈ (0, 1) and γ1 + γ2 + γ3 = 1.

Proof of Proposition 2. The law of motion for ex-ante optimism directly follows from Lemma 4. In the

proof of Lemma 3, we have shown that

Oit = KÕit − (1−K)εpit,

which gives the law of motion for ex-post optimism.

Proof of Lemma 5. We have

V =
σ2
pσ

2
u(ρ

2V + (1− ρ2)σ2
η)

(σ2
p + σ2

u)(ρ
2V + (1− ρ2)σ2

η) + σ2
pσ

2
u

or equivalently
1

V
− 1

ρ2V + (1− ρ2)σ2
η

=
1

σ2
p

+
1

σ2
u

.

Since γ1 = V
σ2
p
, we can write

1

γ1
− 1

ρ2γ1 + (1− ρ2)
σ2
η

σ2
p

= 1 +
σ2
p

σ2
u

.

The left hand side is then increasing in σ2
η and decreasing in σ2

p. Moreover, as it can be alternatively

written as
(1− ρ2)

(
σ2
η

σ2
u
− γ1

)
γ1

(
ρ2γ1 + (1− ρ2)

σ2
η

σ2
p

) ,
the left hand side is also decreasing in γ1. Therefore, we can conclude that γ1 is increasing in σ2

u and

σ2
η while decreasing in σ2

p. In a similar way, we can show that γ2 is increasing in σ2
p and σ2

η while

decreasing in σ2
u. For the comparative statics for γ3, define W = ρ2V + (1 − ρ2)σ2

η . This implies
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V = ρ−2W − (ρ−2 − 1)σ2
η and γ3 ≡ V

W = ρ−2 − (ρ−2 − 1)
σ2
η

W . The last term
σ2
η

W satisfies

(ρ−2 − 1)
(
1− W

σ2
η

)
W
σ2
η

(
ρ−2W

σ2
η
− (ρ−2 − 1)

) =
σ2
η

σ2
p

+
σ2
η

σ2
u

.

The left hand side is increasing in σ2
η

W . Thus, γ3 is decreasing in σ
2
η while increasing in σ2

p and σ2
u.

Proof of Theorem 1. From Proposition 2 and the definition of optimism, we have

yit+1 = ρaait +K(sit+1 − ρaait − ρmit)

= ρaait +K(εpit+1 + ξit+1 − ρmit)

= ρ2aait−1 + (ρa − ρKγ1)ε
p
it + (ρa + ρKγ2)ε

u
it +Kεpit+1 +Kηit+1 + ργ3KÕit.

We can use the relationship between ex-ante and ex-post optimism to derive the second result.

Proof of Lemma 6. Suppose that all agents except for i use a strategy of the form yj0 = θsj0. Then, we

can calculate the best response of i as

yi0 = (1− α)Ei0[ε
p
0] + αEi0[y0]

= (1− α+ αθ)Ei0[ε
p
0]

= (1− α+ αθ)
σ2
p

σ2
p + σ2

ξ

si0.

Thus, the unique linear equilibrium is given by yi0 = θsi0 where θ =
(1−α)σ2

p

(1−α)σ2
p+σ2

ξ
∈ (0, 1). For the

general uniqueness, see Morris and Shin (2002).

Proof of Lemma 7. Suppose that all agents except for i use a strategy of the form yj1 = θ1sj0+θ2a0+θ3sj1,

then these decisions aggregate into

y1 = θ1ε
p
0 + θ2a0 + θ2ε

p
1.

Thus, the the best response of i in period 1 is given by

yi1 = (1− α)Ei1ε
p
1 + αEi1y1

51



= (1− α+ αθ3)Ei1ε
p
1 + αθ2a0 + αθ1Ei1ε

p
0.

Consider the following state-space representation.

x ≡

(
εp0

εp1

)
∼ N (0,Σ) where Σ =

(
σ2
p 0

0 σ2
p

)

y ≡


si0

a0

si1

 =


1 0

1 0

0 1


´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

G

(
εp0

εp1

)
+


ξi

εu0

ξi

.

The Kalman filter gives

E[x|y] = Ky where K = ΣG′(GΣG′ +R)−1 with R =


σ2
ξ 0 σ2

ξ

0 σ2
u 0

σ2
ξ 0 σ2

ξ

.

Thus, we have

yi1 = αθ1

(
1 0

)
Ky + (1− α+ αθ3)

(
0 1

)
Ky + αθ2a0

Matching coefficient, we have

θ1 =
(
αθ1 1− α+ αθ3

)
K


1

0

0



θ2 =
1

1− α

(
αθ1 1− α+ αθ3

)
K


0

1

0



θ3 =
(
αθ1 1− α+ αθ3

)
K


0

0

1

.

Let B =
(
αθ1 1− α+ αθ3

)
, then we can obtain B by

B =
(
0 1− α

)
+BK


1

0

0

(α 0
)
+BK


0

0

1

(0 α
)
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=
(
0 1− α

)I −K


α 0

0 0

0 α




−1

,

which in turn gives the values for θ1, θ2 and θ3. Thus, we can write

y1 = θ1ε
p
0 + θ2(ε

p
0 + εu0) + θ3ε

p
1 ≡ γpε

p
0 + γuε

u
0 + γ′pε

p
1

where

γp = −
σ2
u σ

2
ξ

(1− α)σ2
p σ

2
u + σ2

p σ
2
ξ + 2σ2

u σ
2
ξ

γu =
σ2
p σ

2
ξ

(1− α)σ2
p σ

2
u + σ2

p σ
2
ξ + 2σ2

u σ
2
ξ

γ′p =
(1− α)σ2

p σ
2
u + σ2

p σ
2
ξ + σ2

u σ
2
ξ

(1− α)σ2
p σ

2
u + σ2

p σ
2
ξ + 2σ2

u σ
2
ξ

.

Proof of Lemma 8. From the proof of Lemma 7, we can get

Eit[ξi] ≡ E

ξi∣∣∣∣

si0

a0

si1


 = E

si0 − εp0

∣∣∣∣

si0

a0

si1




=
[(

1 0 0
)
−
(
1 0

)
K
]

si0

a0

si1



= [
(
1 0 0

)
−
(
1 0

)
K]


1 1 0 0

1 0 1 0

0 1 0 1


´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L

z⃗i where z⃗i ≡


εp0

ξi

εu0

εp1

.

Note first that

Oi1 ≡ ξi − Ei1ξi =
[(

0 1 0 0
)
− L

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Q

z⃗i.
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Also note that

Ei1

[∫ 1

0
z⃗j dj

]
= Ei1



εp0

0

εu0

εp1


 = Ei1




si0 − ξi

0

a0 − si0 + ξi

si1 − ξi




=



(
1 1 0 0

)
− L(

0 0 0 0
)(

0 −1 1 0
)
+ L(

0 1 0 1
)
− L


´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

T

z⃗i.

Suppose that Oh−1
i1 = QT h−2z⃗i holds (This indeed holds for h = 2). Then, we have

Oh
i1 = Ei1

[
QT h−2

∫ 1

0
z⃗j dj

]
= QT h−1z⃗i.

Thus, we can inductively show that

Oh
i1 = QT h−1z⃗i.

After some algebra, we can write Q and QT h−1 as functions of underlying parameters:

Q =


− σ2

u σ2
ξ

σ2
p σ2

u+σ2
p σ2

ξ+2σ2
u σ2

ξ

σ2
p σ2

u

σ2
p σ2

u+σ2
p σ2

ξ+2σ2
u σ2

ξ

σ2
p σ2

ξ

σ2
p σ2

u+σ2
p σ2

ξ+2σ2
u σ2

ξ
− σ2

u σ2
ξ

σ2
p σ2

u+σ2
p σ2

ξ+2σ2
u σ2

ξ


QT h−1 =


− (σ2

p)
h−1 (σ2

u)
h σ2

ξ

(σ2
p σ2

u+σ2
p σ2

ξ+2σ2
u σ2

ξ)
h − (σ2

p)
h−1 (σ2

u)
h−1 σ2

ξ (σ
2
p+2σ2

u)

(σ2
p σ2

u+σ2
p σ2

ξ+2σ2
u σ2

ξ)
h

(σ2
p)

h (σ2
u)

h−1 σ2
ξ

(σ2
p σ2

u+σ2
p σ2

ξ+2σ2
u σ2

ξ)
h − (σ2

p)
h−1 (σ2

u)
h σ2

ξ

(σ2
p σ2

u+σ2
p σ2

ξ+2σ2
u σ2

ξ)
h

.

Note that

Q1,2 =
σ2
p σ

2
u

σ2
p σ

2
u + σ2

p σ
2
ξ + 2σ2

u σ
2
ξ

=
1

1 +
σ2
ξ

σ2
u
+ 2

σ2
ξ

σ2
p

is decreasing in σ2
ξ and increasing in σ2

u and σ2
p .
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Proof of Lemma 9. First, we have

Ei1[a1] = Ei1[ε
p
i1] = Ei1[si1 − ξi] = εpi1 + ξi − Ei1[ξi] = εpi1 +Oi1.

Thus,

Ē1ε
p
1 = Ō1.

Suppose that we have

Ei1Ēh−1
1 [a1] = εp1 +Oi1 +O2

i1 + · · ·+Oh−1
i1

Ēh
1 [a1] = εp1 + Ō1 + Ō2

1 + · · ·+ Ōh
1

for a given h. Then, we can obtain

Ei1Ēh
1 [a1] = Ei1

[
εp1 + Ō1 + Ō2

1 + · · ·+ Ōh
1

]
= εp1 +Oi1 +O2

i1 + · · ·+Oh+1
i1 .

hence

Ēh+1
1 [a1] = εp1 + Ō1 + Ō2

1 + · · ·+ Ōh+1
1 .

Thus, we can inductively show Lemma 9.

Proof of Lemma 10. We have shown in the proof of Lemma 8 that

∂Ōh
1

∂εu0
=

(σ2
p)

h (σ2
u)

h−1 σ2
ξ(

σ2
p σ

2
u + σ2

p σ
2
ξ + 2σ2

u σ
2
ξ

)h , for all h ≥ 1

and that
∂Ōh

1

∂εp0
= −

(σ2
p)

h−1 (σ2
u)

h σ2
ξ(

σ2
p σ

2
u + σ2

p σ
2
ξ + 2σ2

u σ
2
ξ

)h , for all h ≥ 1.

After some algebra, we can obtain the results.

Proof of Lemma 11. Recall that, in the proof of Lemma 7, we have

y1 = γpε
p
0 + γuε

u
0 + γ′pε

p
1
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where

γp = −
σ2
u σ

2
ξ

(1− α)σ2
p σ

2
u + σ2

p σ
2
ξ + 2σ2

u σ
2
ξ

γu =
σ2
p σ

2
ξ

(1− α)σ2
p σ

2
u + σ2

p σ
2
ξ + 2σ2

u σ
2
ξ

Thus, the effect of εu0 on y1 (i.e., γu) is increasing in σ2
p , decreasing in σ2

u, and increasing in σ2
ξ . Likewise,

the effect of εp0 on y1 (i.e., |γp|) is increasing in σ2
u, decreasing in σ2

p , and increasing in σ2
ξ .

B. Details of the Numerical Exercise

We utilize the method of Woodford (2003) to solve for the equilibrium dynamics of the aggregate output,

which exploits the fact that firms only need to track particular linear combinations of higher-order beliefs.

The absence of endogenous signals permits us to do so; see Huo and Takayama (2015). We start from a

guess that the relevant aggregate state can be summarized in

xt =
(
εpt εut Ft yt

)′
where38

Ft =

∞∑
k=1

(1− α)αk−1Eitξit
k
= (1− α)Eitξit+ αĒtFt

yt =

∞∑
k=1

(1− α)αk−1Eitε
p
it

k
= (1− α)Eitε

p
it+ αĒtyt

with (and similarly for εpit)

Eitξit = Eitξit
1
=

∫ 1

0
Ejtξjt dj and Eitξit

k
=

∫ 1

0
EjtEitξit

k−1
dj

38 Note that Eit

[∫ 1

0

ξjt dj

]
is always zero, but

∫ 1

0

Ejtξit dj is not.
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and the expectation operators are based on the information set Ωit = (· · · , sit−1, at−1, sit). Firms in

island i then observe

at =
(
0 1 1 0 0

)
xit and sit+1 =

(
1 1 0 0 0

)
xit+1.

We will guess and verify that xt evolves according to the following law of motion

xt = Mxt−1 +m

(
εpt

εut

)

for some matricesM ∈ R4×4 andm ∈ R4×2. We can then solve for firms’ signal extraction problem to

obtain how firms update Ēt+1[xt+1] from Ēt[xt], taking the perceived law of motion assumed above as

given. It turns out that
(
Ft

yt

)
is a linear combination of Ēt[xt], thus we can calculate

(
Ft

yt

)
as a function

of the previous aggregate state xt−1 and innovation εpt . This gives the actual law of motion of xt. The

equilibrium is then characterized by a fixed point of mapping from the perceived law of motion to the

actual law of motion.

C. Proofs for Section 5

For future reference, we start with the following three lemmas.

Lemma A.1 (Covariance). We have Cov( ¯̃Ot, at−1) = − ρV

1− ργ3ρa

(
σ̄2
p

σ2
p

− σ̄2
u

σ2
u

)
.

Proof of Lemma A.1.

Cov( ¯̃Ot, at−1) = Cov
(
(1− ργ3L)

−1(−ργ1ε
p
t−1 + ργ2ε

u
t−1), (1− ρaL)

−1(εpt−1 + εut−1)
)

=
−ργ1σ̄

2
p + ργ2σ̄

2
u

1− ργ3ρa

= − ρV

1− ργ3ρa

(
σ̄2
p

σ2
p

− σ̄2
u

σ2
u

)
.

Lemma A.2 (Coefficients). Let Σ ≡ ρ2V + (1− ρ2)σ2
η , then

1

V
=

1

Σ
+

1

σ2
p

+
1

σ2
u

.
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Moreover, we have

K =
σ2
p

Σ+ σ2
p

γ1 =
σ2
uΣ

Ψ
γ2 =

σ2
pΣ

Ψ
γ3 =

σ2
pσ

2
u

Ψ

where Ψ ≡ Σ(σ2
p + σ2

u) + σ2
pσ

2
u =

σ2
pσ

2
uΣ

V . Thus,

γ1 =
V

σ2
p

γ2 =
V

σ2
u

γ3 =
V

Σ
.

Lemma A.3 (Variables). We can write our variables of interest in terms of innovations and states:

Y1 ≡ at+1 − Ētat+1 = ρa
(
(1−K)εpt + εut −Kργ3

¯̃Ot−1 + ργ1Kεpt−1 − ργ2Kεut−1

)
+ εpt+1 + εut+1

Y2 ≡ at+1 − Ēt+1at+1 = εut+1 + (1−K)εpt+1 + ρKγ1ε
p
t − ρKγ2ε

u
t − ργ3K(γ3ρ

¯̃Ot−1 − ργ1ε
p
t−1 + ργ2ε

u
t−1)

Xcg ≡ Ētat+1 − Ēt−1at+1
sgn
= (ρa(1−K)− ρKγ1)ε

p
t−1 + (ρa + ρKγ2)ε

u
t−1 +Kεpt + (ργ3 − ρa)K

¯̃Ot−1

Xkw ≡ at = ρ2aat−2 + εut + εpt + ρaε
p
t−1 + ρaε

u
t−1

Proof of Lemma A.3.

Y1 ≡ at+1 − Ētat+1 = ρa(at − Ētat) + εpt+1 + εut+1

= ρa((1−K)εpt + εut −K ¯̃Ot) + εpt+1 + εut+1

= ρa
(
(1−K)εpt + εut −Kργ3

¯̃Ot−1 + ργ1Kεpt−1 − ργ2Kεut−1

)
+ εpt+1 + εut+1

Y2 ≡ at+1 − Ēt+1at+1 = εut+1 + (1−K)εpt+1 + ρKγ1ε
p
t − ρKγ2ε

u
t − ργ3K

¯̃Ot

= εut+1 + (1−K)εpt+1 + ρKγ1ε
p
t − ρKγ2ε

u
t − ργ3K(γ3ρ

¯̃Ot−1 − ργ1ε
p
t−1 + ργ2ε

u
t−1)

Xcg ≡ Ētat+1 − Ēt−1at+1 = ρa(Ētat − ρaĒt−1at−1)

sgn
=
(
ρ2aat−2 + (ρa − ρKγ1)ε

p
t−1 + (ρa + ρKγ2)ε

u
t−1 +Kεpt + ργ3K

¯̃Ot−1

)
− ρa

(
ρaat−2 +K(εpt−1 +

¯̃Ot−1)
)

= (ρa(1−K)− ρKγ1)ε
p
t−1 + (ρa + ρKγ2)ε

u
t−1 +Kεpt + (ργ3 − ρa)K

¯̃Ot−1

Xkw ≡ at = ρ2aat−2 + εut + εpt + ρaε
p
t−1 + ρaε

u
t−1

Proof of Proposition 3.
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• Case 1: Common εpt : Var(ε
p
t ) = σ2

p

Cov(Y2, X
cg)

sgn
= ρK2γ1σ

2
p − ργ3K

(
ργ3(ργ3 − ρa)K Var( ¯̃Ot−1)− ργ1(ρa(1−K)− ρKγ1)σ

2
p + ργ2(ρa + ρKγ2)σ

2
u

)
sgn
= KΣ−

(
ργ3(ργ3 − ρa)K Var( ¯̃Ot−1)− ργ1(ρa(1−K)− ρKγ1)σ

2
p + ργ2(ρa + ρKγ2)σ

2
u

)
sgn
= KΣ−

(
ργ3(ργ3 − ρa)K Var( ¯̃Ot−1)− ρV (ρa(1−K)− ρKγ1) + ρV (ρa + ρKγ2)

)
sgn
= KΣ− ργ3(ργ3 − ρa)K Var( ¯̃Ot−1)− ρV K(ρa + ργ2 + ργ1)

sgn
= Σ− ργ3(ργ3 − ρa)Var(

¯̃Ot−1)− ρV (ρa + ργ2 + ργ1)

where Var( ¯̃Ot−1) =
ρ2(γ21σ

2
p + γ22σ

2
u)

1− γ23ρ
2

. Since we always have Σ > ρV (ρa + ργ2 + ργ1), or

1 > ργ3(ρa + ρ− ργ3),

a sufficient condition for Cov(Y,X) > 0 is to have ρa > ργ3.

Moreover, we can show that Cov(Y2, X
cg) > 0 always holds.

• Case 2: Fully Idiosyncratic εpt : Var(ε
p
t ) = 0 Then, since Var( ¯̃Ot) =

ρ2γ2
2σ

2
u

1−ρ2γ2
3
,

Cov(Y2, X
cg) = −ργ3K

(
γ3ρ(ργ3 − ρa)K Var( ¯̃Ot−1) + ργ2(ρa + ρKγ2)σ

2
u

)
sgn
= γ3(ρa − ργ3)K Var( ¯̃Ot−1)− γ2(ρa + ρKγ2)σ

2
u

sgn
= (ρa − ργ3)K Var( ¯̃Ot−1)− Σ(ρa + ρKγ2).

This is linear in ρa, so it suffices to show Cov < 0 when ρa = 0 and ρa = 1. The former is obvious,

the latter is:

Cov(Y2, X
cg)

sgn
= (1− ργ3)K Var( ¯̃Ot−1)− Σ(1 + ρKγ2)

sgn
=

ρ2γ22σ
2
uK

1 + ργ3
− Σ(1 + ρKγ2)

< 0.
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• For the cases with Y1

Cov(Y1, X
cg)

sgn
= (1−K)Kσ̄2

p −Kργ3(ργ3 − ρa)K Var( ¯̃Ot−1) +Kργ1(ρa(1−K)− ρKγ1)σ̄
2
p −Kργ2(ρa + ρKγ2)σ

2
u

sgn
= (1−K)σ̄2

p − ργ3(ργ3 − ρa)K Var( ¯̃Ot−1) + ργ1(ρa(1−K)− ρKγ1)σ̄
2
p − ργ2(ρa + ρKγ2)σ

2
u

For σ̄2
p = σp, we have

Cov(Y1, X
cg)

sgn
= (1−K)σ2

p − ργ3(ργ3 − ρa)K Var( ¯̃Ot−1) + ργ1(ρa(1−K)− ρKγ1)σ
2
p − ργ2(ρa + ρKγ2)σ

2
u

= (1−K)σ2
p − ργ3(ργ3 − ρa)K Var( ¯̃Ot−1) + ρV (ρa(1−K)− ρKγ1)− ρV (ρa + ρKγ2)

sgn
=

1−K

K
σ2
p − ργ3(ργ3 − ρa)Var(

¯̃Ot−1)− ρV (ρa + ργ1 + ργ2)

sgn
= Cov(Y2, X

cg)

For σ̄2
p = 0, we have

Cov(Y1, X
cg)

sgn
= γ3(ρa − ργ3)K Var( ¯̃Ot−1)− γ2(ρa + ρKγ2)σ

2
u

sgn
= Cov(Y2, X

cg)

Proof of Proposition 4.

Cov(Y2, X
kw)

sgn
= γ1σ̄

2
p − γ2σ̄

2
u − γ3(−ργ1ρaσ̄

2
p + ργ2ρaσ̄

2
u)− ργ23ρ

2
aCov(

¯̃Ot−1, at−2)

sgn
=

σ̄2
p

σ2
p

− σ̄2
u

σ2
u

< 0.

Cov(Y1, X
kw)

sgn
= (1−K)σ̄2

p + σ̄2
u −Kργ3ρ

2
aCov(

¯̃Ot−1, at−2) +Kργ1ρaσ̄
2
p −Kργ2ρaσ̄

2
u

Lemma A.1
= (1−K)σ̄2

p + σ̄2
u +Kργ3ρ

2
a

ρV

1− ργ3ρa

(
σ̄2
p

σ2
p

− σ̄2
u

σ2
u

)
+KρρaV

(
σ̄2
p

σ2
p

− σ̄2
u

σ2
u

)
= (1−K)σ̄2

p + σ̄2
u +

KρρaV

1− ργ3ρa

(
σ̄2
p

σ2
p

− σ̄2
u

σ2
u

)
.

This is linear in σ̄2
p (note: V and γ′s depend on σ2

p , not σ̄2
p), so it suffices to show Cov > 0 when σ̄2

p = 0

and σ̄2
p = σ2

p . The latter is obvious, the former is:

Cov(Y1, X
kw)

sgn
= σ̄2

u − KρρaV

1− ργ3ρa

σ̄2
u

σ2
u
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sgn
= 1− Kρρaγ2

1− ργ3ρa
sgn
= 1− ρρa(γ3 +Kγ2) > 0.

Finally, at+1 − Ētat+1 = ρa(at − Ētat) + εpt+1 + εut+1, so Cov(Y1, Xkw)
sgn
= Cov(LY2, X

kw).

Proposition A.1 (Misspecification). When agent i thinks that her noise term follows an AR(1) process,

ξit = ρ̂ξit−1 + ηit where ηit ∼ N
(
0, (1− ρ̂2)σ2

ξ

)
, while the truth is ξit = ρξit−1 + ηit where ηit ∼

N
(
0, (1− ρ2)σ2

ξ

)
, we have39

Cov(ait+h − Eitait+h,Eitait+h − Eit−1ait+h) < 0 ⇐⇒ ρ < ρ̂.

Proof. We can ignore the volatility from εp, εu. Modulo this volatility, we have

Yt = ait+h − Eitait+h

= ρha(at − Eitait) + εt,t+h

= ρha

((
ρaait−1 + εpit + εuit

)
−
(
ρaait−1 +K(εpit + ξit − ρ̂mt−1)

))
+ εt,t+h

= ρha

(
−Kξit +Kρ̂((γ1 + γ2)ξit−1 + γ3ρ̂mt−2)

)
Xt = Eitait+h − Eit−1ait+h

= ρha(Eitait − ρaEit−1ait−1)

= ρha

((
ρaait−1 +K(εpit + ξit − ρ̂mt−1)

)
− ρa

(
ρaait−2 +K(εpit−1 + ξit−1 − ρ̂mt−2)

))
= ρha

(
ρa(ε

p
it−1 + εuit−1) +Kεpit +Kξit −Kρ̂mt−1 − ρaKεpit−1 − ρaKξit−1 + ρaKρ̂mt−2

)
= ρha

(
Kξit −Kρ̂((γ1 + γ2)ξit−1 + γ3ρ̂mt−2)− ρaKξit−1 + ρaKρ̂mt−2

)
Thus, asmt = γ3ρ̂mt−1 + (γ1 + γ2)ξit,

Ỹt ≡
Yt

Kρha ρ̂(γ1 + γ2)
= − 1

ρ̂(γ1 + γ2)
ξit + ξit−1 +

γ3ρ̂

γ1 + γ2
mt−2

= − 1

ρ̂(γ1 + γ2)
ξit + ξit−1 + γ3ρ̂ξit−2 + (γ3ρ̂)

2ξit−3 + · · ·

X̃t ≡
Xt

Kρha ρ̂(γ1 + γ2)
=

1

ρ̂(γ1 + γ2)
ξit +

ρa − ρ̂γ3
γ1 + γ2

mt−2 −
(
1 +

ρa
ρ̂(γ1 + γ2)

)
ξit−1

39We have normalized the variance of innovation to have Var(ξit) = σ2
ξ .
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so, for θ ≡ 1
ρ̂(γ1+γ2)

, β = γ3ρ̂, and δ = ρa − ρ̂γ3,

E
[
ỸtX̃t

]
σ2
η

=
(
−θ 1 β β2 β3 · · ·

)


1 ρ ρ2 ρ3 · · ·
ρ 1 ρ ρ2 · · ·
ρ2 ρ 1 ρ · · ·
ρ3 ρ2 ρ 1 · · ·
...
...
...
... . . .





θ

−1− ρaθ

δ

δβ

δβ2

δβ3

...


= (1) + (2) + (3)

where (1) = δβ

(∑
j,k≥0

ρ|j−k|βj+k

)
= δβ

(
1

1− β2
+
∑
t≥1

ρt2
βt

1− β2

)
= δβ

(
1

1− β2
+

2

1− β2

ρβ

1− ρβ

)
= δβ

1 + ρβ

(1− β2)(1− ρβ)

(2) = −θ

(
θ − ρ(1 + ρaθ) +

δρ2

1− βρ

)
+

(
ρθ − 1− ρaθ +

δρ

1− βρ

)
(3) = θ

βρ2

1− βρ
− (1 + ρaθ)

βρ

1− βρ

Finally, we can show that
∂
(
(1) + (2) + (3)

)
∂ρ

≥ 0

Proof of Proposition 5.

Proof for our model. Note first that

zt+1 ≡ at+1 − Ēt+1at+1 = ργ3zt + κt+1 where κt+1 = −ρ(γ3 +Kγ2)ε
u
t + εut+1 + (1−K)εpt+1

at = ρaat−1 + µt where µt = εpt + εut .

Thus,

Cov(zt+1, at) =
1

1− ργ3ρa

(
Cov(κt+1, µt) + ργ3Cov(zt, µt) + ρaCov(κt+1, at−1)

)
=

1

1− ργ3ρa

(
− ρ(γ3 +Kγ2)σ̄

2
u + ργ3((1−K)σ̄2

p + σ̄2
u)
)

=
ρ

1− ργ3ρa

(
γ3(1−K)σ̄2

p −Kγ2σ̄
2
u

)
40
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=
ρKV

1− ργ3ρa

(
σ̄2
p

σ2
p

− σ̄2
u

σ2
u

)

Finally, we have Var(at) =
σ̄2
p+σ̄2

u

1−ρ2a
.

Proof for extrapolation.

Cov(at+1 − Ēt+1at+1, at) = Cov(ρat + ut+1 − ρ̂at, at) = (ρ− ρ̂)Var(at)

Cov(ait+1 − Eit+1ait+1, ait) = Cov(ρait + uit+1 − ρ̂ait, ait) = (ρ− ρ̂)Var(ait).

Proof for diagnostic expectations. For diagnostic expectations with Kalman gain g0, we have

β̂aggr = β̂ind =
(1− g0)ρ(1− ρ2)(1−K)

1− ρ2(1−K)

sgn
= (1− g0).

We have

ait+1 − Eit+1ait+1 = ait+1 − ENRE
it ait+1 − g0(zit+1 − ENRE

it ait+1)

≡ (1− g0)(ait+1 − ENRE
it ait+1)

Thus,

β̂ind = (1− g0)
Cov(ait+1 − ENRE

it ait+1, ait)

Var(ait)

= (1− g0)ρ
Cov(ait − ENRE

it ait)

Var(ait)

= (1− g0)ρ

(
1− K

1− ρ2(1−K)

)
=

(1− g0)ρ(1− ρ2)(1−K)

1− ρ2(1−K)

where the second to the last equality uses the fact that

ENRE
it ait = ENRE

it−1 ait +K(zit − ENRE
it−1 ait)

= Kzit + ρ(1−K)ENRE
it−1 ait−1

= K
∑
h≥0

ρh(1−K)hzit−h
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hence

Cov(ENRE
it ait, ait) = K

∑
h≥0

ρh(1−K)hCov(zit−h, ait)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ρh Var(ait)

.

Second, we have

at+1 − Ēt+1at+1 ≡ (1− g0)(at+1 − ĒNRE
it at+1)

hence

β̂aggr = (1− g0)
Cov(at+1 − ĒNRE

t at+1, at)

Var(at)

= (1− g0)ρ
Cov(at − ĒNRE

t at, at)

Var(at)

= (1− g0)ρ

(
1− K

1− ρ2(1−K)

)
=

(1− g0)ρ(1− ρ2)(1−K)

1− ρ2(1−K)

where the second to the last equality uses the fact that

ĒNRE
t at = K

∑
h≥0

ρh(1−K)hat−h

hence

Cov(ĒNRE
t at, at) = K

∑
h≥0

ρh(1−K)hCov(at−h, at)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ρh Var(at)

.

Proof for AHS . We have

ait = ρait−1 + εit (perceived: ρ̂)

zit = ait +
1√
τ
uit, (perceived: τ̂ )

we have

β̂aggr = β̂ind = ρ− K̂ρ− K̂ρ̂(1− K̂)

1− ρ̂ρ(1− K̂)
.

As in above, we have

Eitait = K̂
∑
h≥0

ρ̂h(1− K̂)hzit−h
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where K̂ ∈ (0, 1) is a function of ρ̂ and τ̂ . We then have

ait+1 − Eit+1ait+1 =
∑
h≥0

ρhεi,t+1−h − K̂
∑
h≥0

ρ̂h(1− K̂)hzi,t+1−h

so

Cov(ait+1 − Eit+1ait+1, ait) =
∑
h≥0

ρhCov(εi,t+1−h, ait)− K̂
∑
h≥0

ρ̂h(1− K̂)hCov(zi,t+1−h, ait)

= ρVar(εit) + ρ3Var(εit) + ρ5Var(εit) + · · ·

− K̂ρVar(ait)− K̂ρ̂(1− K̂)Var(ait)− K̂ρ̂2(1− K̂)2ρVar(ait)− · · ·

= Var(ait)

(
ρ− K̂ρ− K̂ρ̂(1− K̂)

1− ρ̂ρ(1− K̂)

)
.

where the last equality uses the fact that

(1− ρ2)Var(ait) = Var(εit).

Thus, we have

β̂ind = ρ− K̂ρ− K̂ρ̂(1− K̂)

1− ρ̂ρ(1− K̂)
.

We have

Cov(at+1 − Ēt+1at+1, at) =
∑
h≥0

ρhCov(εt+1−h, at)− K̂
∑
h≥0

ρ̂h(1− K̂)hCov(at+1−h, at)

= ρVar(εt) + ρ3Var(εt) + ρ5Var(εt) + · · ·

− K̂ρVar(at)− K̂ρ̂(1− K̂)Var(at)− K̂ρ̂2(1− K̂)2ρVar(at)− · · ·

= Var(at)

(
ρ− K̂ρ− K̂ρ̂(1− K̂)

1− ρ̂ρ(1− K̂)

)
.

where the last equality uses the fact that

(1− ρ2)Var(at) = Var(εt).
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Thus, we have

β̂aggr = ρ− K̂ρ− K̂ρ̂(1− K̂)

1− ρ̂ρ(1− K̂)
.

Proof for KW . We have

yit =
∑
j

xijt

xijt = ajθit + bjuijt

θit = ρθit−1 + ηit

zijt = xijt + qj · εijt

Then, we have β̂aggr < β̂ind if and only if

Var(ujt)

Var(ηt)
>

Var(uijt)

Var(ηit)
.

Starting from (3), we have

Eit[θit] = Eit−1[θit] +
∑
j

gj(zijt − Eit−1zijt)

= Eit−1[θit] +
∑
j

gj(zijt − ajEit−1θit)

= ρ(1−
∑
j

gjaj)Eit−1θit−1 +
∑
j

gj(ajθit + bjuijt + qjεijt).

Thus,

θit − Eitθit = (1−
∑
j

gjaj)(ρθit−1 + ηit)− ρ(1−
∑
j

gjaj)Eit−1θit−1 −
∑
j

gjbjuijt −
∑
j

gjqjεijt

= ρ(1−
∑
j

gjaj)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Γ

(θit−1 − Eit−1θit−1) + (1−
∑
j

gjaj)ηit −
∑
j

gjbjuijt −
∑
j

gjqjεijt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ζit

=
∑
h≥0

Γhζit−h.
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Thus, we have

yit+1 − Eit+1yit+1 ≡ (
∑
j

aj)(θit+1 − Eit+1θit+1)

= (
∑
j

aj)
∑
h≥0

Γhζi,t+1−h.

and

yit = (
∑
j

aj)
∑
h≥0

ρhηit−h +
∑
j

bjuijt.

Thus, the covariance between them is

Cov = −(
∑
j

aj)Γ
∑
j

gjb
2
j Var(uijt) + (

∑
j

aj)
2ΓCov

(∑
h≥0

Γhζit−h,
∑
h≥0

ρhηit−h

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=(1−
∑

j gjaj)
1

1−Γρ
Var(ηit)

Thus,

β̂ind =
(
∑

j aj)Γ
(
(
∑

j aj)(1−
∑

j gjaj)

1−Γρ Var(ηit)−
∑

j gjb
2
j Var(uijt)

)
(
∑

j aj)
2

1−ρ2
Var(ηit) +

∑
j b

2
j Var(uijt)

.

On the other hand, we have

yt+1 − Ēt+1yt+1 = (
∑
j

aj)
∑
h≥0

Γhζt+1−h

yt = (
∑
j

aj)
∑
h≥0

ρhηt−h +
∑
j

bjujt.

hence

β̂aggr =
(
∑

j aj)Γ
(
(
∑

j aj)(1−
∑

j gjaj)

1−Γρ Var(ηt)−
∑

j gjb
2
j Var(ujt)

)
(
∑

j aj)
2

1−ρ2
Var(ηt) +

∑
j b

2
j Var(ujt)

.

Both beta hats are of the form (impose Var(ujt) = Var(uj′t))

β̂ =
b− aκ

d+ cκ
where κ =

Var(u)

Var(η)
> 0

wherer a, b, c, d > 0. We can easily show that β̂ is decreasing in κ. So we have β̂aggr < β̂ind if and only

if
Var(ujt)

Var(ηt)
>

Var(uijt)

Var(ηit)
.
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